A246477 Number of length n+3 0..6 arrays with no pair in any consecutive four terms totaling exactly 6.
966, 4386, 20004, 91212, 415650, 1893780, 8628792, 39320988, 179184654, 816514170, 3720653346, 16954232310, 77257406100, 352048294158, 1604217270528, 7310107829838, 33310766859666, 151790888076216, 691682436483000
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1....1....5....2....0....1....5....0....3....0....6....4....3....5....1....2 ..0....4....5....0....0....1....4....0....2....5....3....5....1....5....1....1 ..1....0....3....3....1....2....4....1....1....2....5....5....4....4....3....2 ..2....4....5....5....3....0....6....0....1....2....5....4....1....6....1....6 ..2....0....0....2....4....2....3....4....1....3....2....5....6....6....2....2 ..3....4....5....5....6....5....5....0....3....5....0....3....1....6....0....6 ..5....0....2....0....1....3....5....5....1....5....2....5....6....3....3....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A246479.
Formula
Empirical: a(n) = 3*a(n-1) +2*a(n-2) +3*a(n-3) +77*a(n-4) +55*a(n-5) +59*a(n-6) +18*a(n-7) +a(n-8) +4*a(n-9) +a(n-10).
Comments