A246478 Number of length n+3 0..7 arrays with no pair in any consecutive four terms totalling exactly 7.
1880, 10376, 57416, 317576, 1756472, 9714968, 53733080, 297195272, 1643773832, 9091640072, 50285457464, 278126631896, 1538306048600, 8508302434184, 47059042885064, 260281476168584, 1439605284832568, 7962392893359512
Offset: 1
Keywords
Examples
Some solutions for n=3: ..5....0....1....0....2....4....6....0....2....5....6....7....2....7....7....7 ..7....5....0....1....6....0....5....4....1....3....2....3....0....3....6....4 ..5....6....1....4....7....1....6....1....7....1....6....6....3....3....4....7 ..5....6....5....2....6....0....7....0....1....7....7....5....6....1....5....4 ..5....0....0....2....2....2....6....0....5....7....6....5....5....2....4....7 ..1....6....1....6....3....4....2....3....1....5....2....5....3....7....4....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 7 of A246479.
Formula
Empirical: a(n) = 5*a(n-1) + 2*a(n-2) + 5*a(n-3) + a(n-4).
Empirical g.f.: 8*x*(235 + 122*x + 222*x^2 + 43*x^3) / (1 - 5*x - 2*x^2 - 5*x^3 - x^4). - Colin Barker, Nov 06 2018