A246479 T(n,k)=Number of length n+3 0..k arrays with no pair in any consecutive four terms totalling exactly k.
2, 10, 2, 60, 14, 2, 172, 132, 20, 2, 462, 484, 292, 28, 2, 966, 1734, 1376, 644, 38, 2, 1880, 4386, 6534, 3904, 1420, 52, 2, 3256, 10376, 20004, 24582, 11020, 3132, 72, 2, 5370, 20840, 57416, 91212, 92478, 31104, 6908, 100, 2, 8290, 39690, 133664, 317576
Offset: 1
Examples
Some solutions for n=5 k=4 ..0....3....0....2....2....2....3....2....2....0....4....4....0....0....1....0 ..2....4....0....3....0....4....4....1....0....1....3....3....0....0....0....2 ..1....3....2....0....3....4....2....0....0....0....3....3....0....3....2....1 ..0....4....0....3....3....3....4....0....0....1....3....4....1....2....1....1 ..0....4....1....0....3....4....4....0....1....1....3....3....0....3....1....4 ..0....3....0....0....4....3....4....1....0....0....3....4....1....4....4....4 ..1....3....1....2....3....3....4....0....0....1....2....4....0....3....1....1 ..0....3....1....3....3....4....4....1....1....2....3....3....1....4....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Programs
-
Maple
G:= proc(m,k) # first m terms in column k local q,r,s,S,nS,M,u,v,V,i; S:= remove(t -> t[1]+t[2]=k or t[1]+t[3]=k or t[2]+t[3]=k, [seq(seq(seq([q,r,s],s=0..k),r=0..k),q=0..k)]); nS:= nops(S); M:= Matrix(nS,nS,(i,j) -> `if`(S[i][2..3] = S[j][1..2] and S[i][1] + S[j][3] <> k, 1, 0)); u:= Vector[column](nS,1); v:= u; V:= Vector(m); for i from 1 to m do v:= M . v; V[i]:= u^%T . v od; V end proc: R:= Matrix(10,20): interface(rtablesize=[10,20]): for j from 1 to 20 do R[.., j] := G(10, j) od: R; # Robert Israel, Nov 10 2024
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-4)
k=3: a(n) = 2*a(n-1) +a(n-3)
k=4: a(n) = 2*a(n-1) +a(n-3) +14*a(n-4) +3*a(n-5) +6*a(n-6) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4)
k=6: [order 10]
k=7: a(n) = 5*a(n-1) +2*a(n-2) +5*a(n-3) +a(n-4)
k=8: [order 10]
k=9: a(n) = 7*a(n-1) +2*a(n-2) +7*a(n-3) +a(n-4)
From Robert Israel, Nov 10 2024: (Start)
It appears that for k >= 5 odd, the recurrence for column k is
a(n) = (k - 2)*a(n-1) + 2*a(n-2) + (k - 2)*a(n-3) + a(n-4)
and that for k >= 6 even, the recurrence for column k is
a(n) = (k - 3)*a(n-1) + 2*a(n-2) + (k-3)*a(n-3) + (k^3 - 6*k^2 + 15*k - 13)*a(n-4) + (3*k^2 - 11*k + 13)*a(n-5) + (k^3 - 7*k^2 + 19*k - 19)*a(n-6) + (k^2 - 4*k + 6)*a(n-7) + a(n-8) + (k - 2)*a(n-9) + a(n-10). (End)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=2: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=3: [order 11]
n=4: [order 13]
n=5: [order 15]
n=6: [order 17]
n=7: [order 19]
Comments