cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246479 T(n,k)=Number of length n+3 0..k arrays with no pair in any consecutive four terms totalling exactly k.

Original entry on oeis.org

2, 10, 2, 60, 14, 2, 172, 132, 20, 2, 462, 484, 292, 28, 2, 966, 1734, 1376, 644, 38, 2, 1880, 4386, 6534, 3904, 1420, 52, 2, 3256, 10376, 20004, 24582, 11020, 3132, 72, 2, 5370, 20840, 57416, 91212, 92478, 31104, 6908, 100, 2, 8290, 39690, 133664, 317576
Offset: 1

Views

Author

R. H. Hardin, Aug 27 2014

Keywords

Comments

Table starts
.2..10....60.....172......462.......966.......1880........3256.........5370
.2..14...132.....484.....1734......4386......10376.......20840........39690
.2..20...292....1376.....6534.....20004......57416......133664.......293770
.2..28...644....3904....24582.....91212.....317576......857248......2174090
.2..38..1420...11020....92478....415650....1756472.....5497304.....16089370
.2..52..3132...31104...347934...1893780....9714968....35251360....119069850
.2..72..6908...87888..1309038...8628792...53733080...226048032....881180090
.2.100.15236..248568..4924998..39320988..297195272..1449551536...6521200010
.2.138.33604..702724.18529350.179184654.1643773832..9295405128..48260338570
.2.190.74116.1985932.69713094.816514170.9091640072.59607621016.357152100490

Examples

			Some solutions for n=5 k=4
..0....3....0....2....2....2....3....2....2....0....4....4....0....0....1....0
..2....4....0....3....0....4....4....1....0....1....3....3....0....0....0....2
..1....3....2....0....3....4....2....0....0....0....3....3....0....3....2....1
..0....4....0....3....3....3....4....0....0....1....3....4....1....2....1....1
..0....4....1....0....3....4....4....0....1....1....3....3....0....3....1....4
..0....3....0....0....4....3....4....1....0....0....3....4....1....4....4....4
..1....3....1....2....3....3....4....0....0....1....2....4....0....3....1....1
..0....3....1....3....3....4....4....1....1....2....3....3....1....4....1....1
		

Programs

  • Maple
    G:= proc(m,k) # first m terms in column k
      local q,r,s,S,nS,M,u,v,V,i;
      S:= remove(t -> t[1]+t[2]=k or t[1]+t[3]=k or t[2]+t[3]=k, [seq(seq(seq([q,r,s],s=0..k),r=0..k),q=0..k)]);
    nS:= nops(S);
    M:= Matrix(nS,nS,(i,j) -> `if`(S[i][2..3] = S[j][1..2] and S[i][1] + S[j][3] <> k, 1, 0));
      u:= Vector[column](nS,1); v:= u;
      V:= Vector(m);
      for i from 1 to m  do
        v:= M . v;
        V[i]:= u^%T . v
      od;
      V
    end proc:
    R:= Matrix(10,20):
    interface(rtablesize=[10,20]):
    for j from 1 to 20 do R[.., j] := G(10, j) od:
    R; # Robert Israel, Nov 10 2024

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-4)
k=3: a(n) = 2*a(n-1) +a(n-3)
k=4: a(n) = 2*a(n-1) +a(n-3) +14*a(n-4) +3*a(n-5) +6*a(n-6) +a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) +2*a(n-2) +3*a(n-3) +a(n-4)
k=6: [order 10]
k=7: a(n) = 5*a(n-1) +2*a(n-2) +5*a(n-3) +a(n-4)
k=8: [order 10]
k=9: a(n) = 7*a(n-1) +2*a(n-2) +7*a(n-3) +a(n-4)
From Robert Israel, Nov 10 2024: (Start)
It appears that for k >= 5 odd, the recurrence for column k is
a(n) = (k - 2)*a(n-1) + 2*a(n-2) + (k - 2)*a(n-3) + a(n-4)
and that for k >= 6 even, the recurrence for column k is
a(n) = (k - 3)*a(n-1) + 2*a(n-2) + (k-3)*a(n-3) + (k^3 - 6*k^2 + 15*k - 13)*a(n-4) + (3*k^2 - 11*k + 13)*a(n-5) + (k^3 - 7*k^2 + 19*k - 19)*a(n-6) + (k^2 - 4*k + 6)*a(n-7) + a(n-8) + (k - 2)*a(n-9) + a(n-10). (End)
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)
n=2: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9)
n=3: [order 11]
n=4: [order 13]
n=5: [order 15]
n=6: [order 17]
n=7: [order 19]