A246534 a(n) = Sum_{k=1..n} 2^(T(k)-1), where T(k)=k(k+1)/2 = A000217(k).
0, 1, 5, 37, 549, 16933, 1065509, 135283237, 34495021605, 17626681066021, 18032025190548005, 36911520172609651237, 151152638972001256489509, 1238091191924352276155613733, 20283647694843594776223406899749, 664634281540152780046679753547072037
Offset: 0
Keywords
Examples
Label the cells of an infinite square matrix with 0,1,2,3,... along antidiagonals: 0 1 3 6 10 ... 2 4 7 ... 5 8 ... 9 ... .... Now any subset of these cells can be represented by the sum of 2 raised to the power written in the given cells. In particular, the subset consisting of the first cell in the first 1, 2, 3, ... rows is represented by 2^0, 2^0+2^2, 2^0+2^2+2^5, ...
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; Select[Range[0,1000],normQ[stc[#]]&&Greater@@stc[#]&] (* Gus Wiseman, Apr 02 2020 *)
-
PARI
t=0;vector(20,n,t+=2^(n*(n+1)/2-1)) \\ yields the vector starting with a[1]=1
-
PARI
t=0;vector(20,n,if(n>1,t+=2^(n*(n-1)/2-1))) \\ yields the vector starting with 0
-
Python
a = 0 for n in range(1,17): print(a, end =', '); a += 1<<(n-1)*(n+2)//2 # Ya-Ping Lu, Jan 23 2024
Comments