This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246544 #51 May 14 2025 01:10:37 %S A246544 6,21,28,85,496,2133,8128,19521,77125,97273,176661,615281,4948133, %T A246544 33550336,68353213,129127041,8589869056 %N A246544 Consider the aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %C A246544 Similar to Keith numbers and Primonacci numbers, using proper divisors instead of digits or prime factors. %C A246544 The perfect numbers A000396 are a subset. %C A246544 The numbers of iterations are: 1, 2, 1, 3, 1, 2, 1, 2, 3, 4, 2, 5, ...; with 1 when the term is perfect. - _Michel Marcus_, Aug 30 2014 %C A246544 The 2-hyperperfect numbers A007593 are a subset, with number of iterations 2. - _Michel Marcus_, Sep 22 2014 %e A246544 Aliquot parts of 85 are 1, 5 and 17: %e A246544 1 + 5 + 17 = 23; %e A246544 5 + 17 + 23 = 45; %e A246544 17 + 23 + 45 = 85. %e A246544 Aliquot parts of 19521 are 1, 3, 9, 27, 81, 241, 723, 2169 and 6507: %e A246544 1 + 3 + 9 + 27 + 81 + 241 + 723 + 2169 + 6507 = 9761; %e A246544 3 + 9 + 27 + 81 + 241 + 723 + 2169 + 6507 + 9761 = 19521. %p A246544 with(numtheory): P:=proc(q,h) %p A246544 local a,b,k,n,t,v; v:=array(1..h); %p A246544 for n from 2 to q do if not isprime(n) then %p A246544 a:=sort([op(divisors(n))]); b:=nops(a)-1; %p A246544 for k from 1 to b do v[k]:=a[k]; od; %p A246544 t:=b+1; v[t]:=add(v[k],k=1..b); %p A246544 while v[t]<n do t:=t+1; v[t]:=add(v[k],k=t-b..t-1); od; %p A246544 if v[t]=n then print(n); fi; fi; od; end: P(10^9,1000); %t A246544 A246544 = {}; %t A246544 For[n = 4, n <= 1000000, n++, %t A246544 If[PrimeQ[n], Continue[]]; %t A246544 a = Most[Divisors[n]]; %t A246544 sum = Total[a]; %t A246544 While[sum < n, sum = Total[a = Join[Rest[a], {sum}]]]; %t A246544 If[sum == n, AppendTo[A246544, n]]; %t A246544 ]; A246544 (* _Robert Price_, Sep 08 2019 *) %o A246544 (PARI) lista(nn) = {forcomposite(n=1, nn, d = divisors(n); v = vector(#d-1, i, d[i]); vs = sum(i=1, #v, v[i]); ind = 1; while (vs < n, v = concat(v, vs); vs += vs - v[ind]; ind++;); if (vs == n, print1(n, ", ")););} \\ _Michel Marcus_, Aug 29 2014 %o A246544 (Python) %o A246544 import math %o A246544 def divs(n): %o A246544 large_divisors = [] %o A246544 for i in range(1, int(math.sqrt(n) + 1)): %o A246544 if n % i == 0: %o A246544 yield i %o A246544 if i != n // i: %o A246544 large_divisors.insert(0, n / i) %o A246544 for divisor in large_divisors: %o A246544 yield divisor %o A246544 a = 2 %o A246544 while a < 1000000000: %o A246544 q = list(divs(a))[:-1] %o A246544 r = sum(q) %o A246544 if r > a or len(q) == 1: %o A246544 pass %o A246544 elif r == a: %o A246544 print(a) %o A246544 else: %o A246544 c = 1 %o A246544 while r < a: %o A246544 q.append(r) %o A246544 r = sum(q[c:]) %o A246544 c += 1 %o A246544 if r == a: %o A246544 print(a) %o A246544 a += 1 %o A246544 # _David Consiglio, Jr._, Sep 09 2014 %o A246544 (Python) %o A246544 from sympy import divisors, isprime %o A246544 A246544_list = [] %o A246544 for n in range(2,10**5): %o A246544 if not isprime(n): %o A246544 x = divisors(n) %o A246544 x.pop() %o A246544 y = sum(x) %o A246544 while y < n: %o A246544 x, y = x[1:]+[y], 2*y-x[0] %o A246544 if y == n: %o A246544 A246544_list.append(n) %o A246544 # _Chai Wah Wu_, Nov 03 2014 %Y A246544 Cf. A000396, A007629, A212875. %K A246544 nonn,more %O A246544 1,1 %A A246544 _Paolo P. Lava_, Aug 29 2014 %E A246544 a(13)-a(15) from _Michel Marcus_, Aug 29 2014 %E A246544 a(16) from _David Consiglio, Jr._, Sep 06 2014 %E A246544 a(17) from _Lars Blomberg_, Oct 27 2014