This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246549 #26 Sep 11 2024 22:48:52 %S A246549 8,16,27,32,64,81,125,128,243,256,343,512,625,729,1024,1331,2048,2187, %T A246549 2197,2401,3125,4096,4913,6561,6859,8192,12167,14641,15625,16384, %U A246549 16807,19683,24389,28561,29791,32768,50653,59049,65536,68921,78125,79507,83521,103823,117649,130321,131072,148877,161051,177147,205379 %N A246549 Prime powers p^e where p is a prime and e >= 3 (prime powers without 1, the primes, or the squares of primes). %C A246549 Consists of 8 and the terms of A088247. - _R. J. Mathar_, Sep 01 2014 %H A246549 Jens Kruse Andersen, <a href="/A246549/b246549.txt">Table of n, a(n) for n = 1..10000</a> %F A246549 Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^2*(p-1)) = A152441. - _Amiram Eldar_, Oct 24 2020 %t A246549 With[{nn=60},Take[Union[Flatten[Table[p^Range[3,nn/3],{p,Prime[ Range[ nn]]}]]],nn]] (* _Harvey P. Dale_, Dec 10 2015 *) %o A246549 (PARI) for(n=1, 10^6, if(isprimepower(n)>=3, print1(n, ", "))); %o A246549 (PARI) m=10^6; v=[]; forprime(p=2, m^(1/3), e=3; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. _Jens Kruse Andersen_, Aug 29 2014 %o A246549 (Python) %o A246549 from math import isqrt %o A246549 from sympy import primerange, integer_nthroot, primepi %o A246549 def A246549(n): %o A246549 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A246549 def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))) %o A246549 def bisection(f,kmin=0,kmax=1): %o A246549 while f(kmax) > kmax: kmax <<= 1 %o A246549 while kmax-kmin > 1: %o A246549 kmid = kmax+kmin>>1 %o A246549 if f(kmid) <= kmid: %o A246549 kmax = kmid %o A246549 else: %o A246549 kmin = kmid %o A246549 return kmax %o A246549 return bisection(f,n,n) # _Chai Wah Wu_, Sep 11 2024 %Y A246549 Cf. A000961, A152441, A246547, A246550. %K A246549 nonn %O A246549 1,1 %A A246549 _Joerg Arndt_, Aug 29 2014