This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246550 #19 Sep 12 2024 11:29:26 %S A246550 16,32,64,81,128,243,256,512,625,729,1024,2048,2187,2401,3125,4096, %T A246550 6561,8192,14641,15625,16384,16807,19683,28561,32768,59049,65536, %U A246550 78125,83521,117649,130321,131072,161051,177147,262144,279841,371293,390625,524288,531441,707281,823543,923521,1048576,1419857,1594323,1771561 %N A246550 Prime powers p^e where p is a prime and e >= 4. %H A246550 Jens Kruse Andersen, <a href="/A246550/b246550.txt">Table of n, a(n) for n = 1..10000</a> %F A246550 Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p^3*(p-1)) = 0.1461466097... - _Amiram Eldar_, Oct 24 2020 %p A246550 N:= 10^7: # to get all terms <= N %p A246550 {seq(seq(p^m, m=4..floor(log[p](N))), p = select(isprime,[2,seq(2*i+1,i=1..floor(N^(1/4)))]))}; # _Robert Israel_, Aug 29 2014 %t A246550 With[{max = 10^6}, Sort @ Flatten @ Table[p^Range[4, Floor[Log[p, max]]], {p, Select[Range[Surd[max, 4]], PrimeQ]}]] (* _Amiram Eldar_, Oct 24 2020 *) %o A246550 (PARI) m=10^7; v=[]; forprime(p=2, m^(1/4), e=4; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ _Jens Kruse Andersen_, Aug 29 2014 %o A246550 (Python) %o A246550 from math import isqrt %o A246550 from sympy import primerange, integer_nthroot, primepi %o A246550 def A246550(n): %o A246550 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A246550 def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(4, x.bit_length()))) %o A246550 def bisection(f,kmin=0,kmax=1): %o A246550 while f(kmax) > kmax: kmax <<= 1 %o A246550 while kmax-kmin > 1: %o A246550 kmid = kmax+kmin>>1 %o A246550 if f(kmid) <= kmid: %o A246550 kmax = kmid %o A246550 else: %o A246550 kmin = kmid %o A246550 return kmax %o A246550 return bisection(f,n,n) # _Chai Wah Wu_, Sep 12 2024 %Y A246550 Cf. A000961, A246547, A246549, A168363. %K A246550 nonn %O A246550 1,1 %A A246550 _Joerg Arndt_, Aug 29 2014