This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246551 #55 Sep 24 2024 09:28:01 %S A246551 2,3,5,7,8,11,13,17,19,23,27,29,31,32,37,41,43,47,53,59,61,67,71,73, %T A246551 79,83,89,97,101,103,107,109,113,125,127,128,131,137,139,149,151,157, %U A246551 163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,243,251,257,263,269,271,277,281,283,293,307,311,313 %N A246551 Prime powers p^e where p is a prime and e is odd. %C A246551 These are the integers with only one prime factor whose cototient is square, so this sequence is a subsequence of A063752. Indeed, cototient(p^(2k+1)) = (p^k)^2 and cototient(p) = 1 = 1^2. - _Bernard Schott_, Jan 08 2019 %C A246551 With 1 prepended, this sequence is the lexicographically earliest sequence of distinct numbers whose partial products are all numbers whose exponents in their prime power factorization are squares (A197680). - _Amiram Eldar_, Sep 24 2024 %H A246551 Jens Kruse Andersen, <a href="/A246551/b246551.txt">Table of n, a(n) for n = 1..10000</a> %t A246551 Take[Union[Flatten[Table[Prime[n]^(k + 1), {n, 100}, {k, 0, 14, 2}]]], 100] (* _Vincenzo Librandi_, Jan 10 2019 *) %o A246551 (PARI) for(n=1, 10^4, my(e=isprimepower(n)); if(e%2==1, print1(n, ", "))) %o A246551 (Magma) [n:n in [2..1000]| #PrimeDivisors(n) eq 1 and IsSquare(n-EulerPhi(n))]; // _Marius A. Burtea_, May 15 2019 %o A246551 (Python) %o A246551 from sympy import primepi, integer_nthroot %o A246551 def A246551(n): %o A246551 def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0])for k in range(1,x.bit_length(),2))) %o A246551 kmin, kmax = 1,2 %o A246551 while f(kmax) >= kmax: %o A246551 kmax <<= 1 %o A246551 while True: %o A246551 kmid = kmax+kmin>>1 %o A246551 if f(kmid) < kmid: %o A246551 kmax = kmid %o A246551 else: %o A246551 kmin = kmid %o A246551 if kmax-kmin <= 1: %o A246551 break %o A246551 return kmax # _Chai Wah Wu_, Aug 13 2024 %Y A246551 Cf. A000961, A246547, A246549, A168363, A197680, subsequence of A171561. %Y A246551 Cf. also A056798 (prime powers with even exponents >= 0). %Y A246551 Subsequence of A063752. %K A246551 nonn %O A246551 1,1 %A A246551 _Joerg Arndt_, Aug 29 2014