cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246553 Limiting sequence obtained by taking the sequence 0, 2, 3, 5, 7, 11, 13, ... and applying an infinite process which is described in the comments.

This page as a plain text file.
%I A246553 #75 Feb 15 2016 14:53:15
%S A246553 1,2,7,7,7,43,5,16,19,87,25,31,1061,9,43,32815,565,63,61,16451,7,73,
%T A246553 1048655,2131,91,97,131173,39,107,16777325,4209,127,4294967427,524425,
%U A246553 171,149,134217879,4253,163,68719476903,1048749,187,181,536871103,2241,197,549755814087
%N A246553 Limiting sequence obtained by taking the sequence 0, 2, 3, 5, 7, 11, 13, ... and applying an infinite process which is described in the comments.
%C A246553 Consider the (0,1)-triangle T_0(P) with entries numbered 1,2,3,4,..., the rows of which, read in binary and converted to decimal, give the sequence 0 followed by consecutive primes, 0,2,3,5,7,...
%C A246553 Let the operator A_k map every k-th entry to its binary opposite (1->0, 0->1), for k=1,2,... .
%C A246553 Put T_inf(P) = ...*A_3*A_2*A_1(T_(0)P), with successive applications of the operators A_1, A_2, A_3, ...
%C A246553 Note that the (0,1)-triangle T_inf(P) is well-defined, since the operator T_n does not affect entries in the first floor((sqrt(8*n-7) - 1)/2) rows.
%C A246553 The sequence lists numbers obtained by reading rows of T_inf(P) in binary and converting them to decimal.
%H A246553 Peter J. C. Moses, <a href="/A246553/b246553.txt">Table of n, a(n) for n = 1..500</a>
%F A246553 If we take the initial triangle T_0(O) to consist of all 0's, then in T_inf(O) the 1's are only on positions of squares of all positive numbers, i.e., 1,4,9,16,... . Indeed, in order to get an entry in the n-th position of T_inf(O), we should use all considered operators A_d, d|n. The number of these operators is the number of divisors of n which is odd iff n is a perfect square. Thus only in this case, we obtain that entry in the n-th position is flipped, beginning with 0, an odd number of times, such that in the n-th position of T_inf(O) we have 1, while, if n is nonsquare, in the n-th position we have 0.
%F A246553 T_inf(O) begins:
%F A246553 1
%F A246553 00
%F A246553 100
%F A246553 0010
%F A246553 00000
%F A246553 100000
%F A246553 0001000
%F A246553 00000001
%F A246553 .........
%F A246553 Now we have T_inf(P) = XNOR(T_0(P), T_inf(O)).
%e A246553 T_0(P) begins:
%e A246553 0
%e A246553 10
%e A246553 11
%e A246553 101
%e A246553 111
%e A246553 1011
%e A246553 1101
%e A246553 10001
%e A246553 ........
%e A246553 T_inf(P) begins:
%e A246553 1
%e A246553 10
%e A246553 111
%e A246553 0111
%e A246553 00111
%e A246553 101011
%e A246553 0000101
%e A246553 00010000
%e A246553 000010011
%e A246553 0001010111
%e A246553 00000011001
%e A246553 000000011111
%e A246553 0010000100101
%e A246553 .............
%t A246553 seq=Apply[BitXor,{Map[If[IntegerQ[Sqrt[#]],1,0]&,Range[Length[#]]],#}&[Flatten[Join[{{0}},Map[IntegerDigits[Prime[#],2,#+1]&,Range[50]]]]]];
%t A246553 Map[FromDigits[#,2]&,MapThread[seq[[#1;;#2]]&,({Join[{0},Most[#1]]+1,#1}&)[#/2(#+1)&[Range[NestWhile[#+1&,1,((1+#1) (2+#1)<=2Length[seq])&]]]]]] (* _Peter J. C. Moses_, Nov 18 2014 *)
%Y A246553 Cf. A000040, A000225, A247092.
%K A246553 nonn
%O A246553 1,2
%A A246553 _Vladimir Shevelev_ and _Peter J. C. Moses_, Nov 16 2014