This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246553 #75 Feb 15 2016 14:53:15 %S A246553 1,2,7,7,7,43,5,16,19,87,25,31,1061,9,43,32815,565,63,61,16451,7,73, %T A246553 1048655,2131,91,97,131173,39,107,16777325,4209,127,4294967427,524425, %U A246553 171,149,134217879,4253,163,68719476903,1048749,187,181,536871103,2241,197,549755814087 %N A246553 Limiting sequence obtained by taking the sequence 0, 2, 3, 5, 7, 11, 13, ... and applying an infinite process which is described in the comments. %C A246553 Consider the (0,1)-triangle T_0(P) with entries numbered 1,2,3,4,..., the rows of which, read in binary and converted to decimal, give the sequence 0 followed by consecutive primes, 0,2,3,5,7,... %C A246553 Let the operator A_k map every k-th entry to its binary opposite (1->0, 0->1), for k=1,2,... . %C A246553 Put T_inf(P) = ...*A_3*A_2*A_1(T_(0)P), with successive applications of the operators A_1, A_2, A_3, ... %C A246553 Note that the (0,1)-triangle T_inf(P) is well-defined, since the operator T_n does not affect entries in the first floor((sqrt(8*n-7) - 1)/2) rows. %C A246553 The sequence lists numbers obtained by reading rows of T_inf(P) in binary and converting them to decimal. %H A246553 Peter J. C. Moses, <a href="/A246553/b246553.txt">Table of n, a(n) for n = 1..500</a> %F A246553 If we take the initial triangle T_0(O) to consist of all 0's, then in T_inf(O) the 1's are only on positions of squares of all positive numbers, i.e., 1,4,9,16,... . Indeed, in order to get an entry in the n-th position of T_inf(O), we should use all considered operators A_d, d|n. The number of these operators is the number of divisors of n which is odd iff n is a perfect square. Thus only in this case, we obtain that entry in the n-th position is flipped, beginning with 0, an odd number of times, such that in the n-th position of T_inf(O) we have 1, while, if n is nonsquare, in the n-th position we have 0. %F A246553 T_inf(O) begins: %F A246553 1 %F A246553 00 %F A246553 100 %F A246553 0010 %F A246553 00000 %F A246553 100000 %F A246553 0001000 %F A246553 00000001 %F A246553 ......... %F A246553 Now we have T_inf(P) = XNOR(T_0(P), T_inf(O)). %e A246553 T_0(P) begins: %e A246553 0 %e A246553 10 %e A246553 11 %e A246553 101 %e A246553 111 %e A246553 1011 %e A246553 1101 %e A246553 10001 %e A246553 ........ %e A246553 T_inf(P) begins: %e A246553 1 %e A246553 10 %e A246553 111 %e A246553 0111 %e A246553 00111 %e A246553 101011 %e A246553 0000101 %e A246553 00010000 %e A246553 000010011 %e A246553 0001010111 %e A246553 00000011001 %e A246553 000000011111 %e A246553 0010000100101 %e A246553 ............. %t A246553 seq=Apply[BitXor,{Map[If[IntegerQ[Sqrt[#]],1,0]&,Range[Length[#]]],#}&[Flatten[Join[{{0}},Map[IntegerDigits[Prime[#],2,#+1]&,Range[50]]]]]]; %t A246553 Map[FromDigits[#,2]&,MapThread[seq[[#1;;#2]]&,({Join[{0},Most[#1]]+1,#1}&)[#/2(#+1)&[Range[NestWhile[#+1&,1,((1+#1) (2+#1)<=2Length[seq])&]]]]]] (* _Peter J. C. Moses_, Nov 18 2014 *) %Y A246553 Cf. A000040, A000225, A247092. %K A246553 nonn %O A246553 1,2 %A A246553 _Vladimir Shevelev_ and _Peter J. C. Moses_, Nov 16 2014