This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246554 #38 Sep 08 2022 08:46:09 %S A246554 11,11,22,33,55,88,1313,2121,3434,5555,8989,144144,233233,377377, %T A246554 610610,987987,15971597,25842584,41814181,67656765,1094610946, %U A246554 1771117711,2865728657,4636846368,7502575025,121393121393,196418196418,317811317811,514229514229 %N A246554 Concatenation of the n-th Fibonacci number with itself. %C A246554 a(n) is the n-th Fibonacci number concatenated with itself; concatenation A000045. %C A246554 Also, the quotient of a(n) divided by the n-th Fibonacci number is 10^d(n)+1, where d(n) is the number of digits in the n-th Fibonacci number (A060384). %H A246554 Harvey P. Dale, <a href="/A246554/b246554.txt">Table of n, a(n) for n = 1..1000</a> %F A246554 a(n) = A000045(n)*(10^A060384(n)+1). - _Robert Israel_, Nov 16 2014 %e A246554 The 7th Fibonacci number, 13, is concatenated with itself to become a(7) = 1313. %p A246554 A:= proc(n) %p A246554 local f; %p A246554 f:= combinat:-fibonacci(n); %p A246554 (10^length(f)+1)*f; %p A246554 end proc: %p A246554 map(A, [$1..100]); # _Robert Israel_, Nov 16 2014 %p A246554 # second Maple program: %p A246554 a:= n-> (p-> parse(cat(p$2)))((<<0|1>, <1|1>>^n)[1, 2]): %p A246554 seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 17 2014 %t A246554 Table[FromDigits[Join[Flatten[IntegerDigits[{Fibonacci[n], Fibonacci[n]}]]]], {n, 50}] (* _Vincenzo Librandi_, Nov 15 2014 *) %t A246554 #*10^IntegerLength[#]+#&/@Fibonacci[Range[30]] (* _Harvey P. Dale_, Jul 04 2015 *) %o A246554 (PARI) a(n)=(k->eval(Str(k,k)))(fibonacci(n)) \\ _Charles R Greathouse IV_, Nov 15 2014 %o A246554 (Magma) [Seqint(Intseq(Fibonacci(n)) cat Intseq(Fibonacci(n))): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2014 %Y A246554 Cf. A247337, A247338, A000045, A060384. %K A246554 nonn,base %O A246554 1,1 %A A246554 _Indrani Das_, Nov 14 2014