This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246571 #6 Sep 02 2014 03:23:41 %S A246571 1,6,39,340,3041,28718,279987,2788464,28256709,290124182,3010689527, %T A246571 31516942060,332347297141,3526399820374,37616896717155, %U A246571 403127408462816,4337723615579781,46842172878701486,507454305359968827,5513119883595629556,60050379276555861857,655611405802102543086 %N A246571 G.f.: Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2. %C A246571 A bisection of A246563. %C A246571 Self-convolution of A246573. %H A246571 Vaclav Kotesovec, <a href="/A246571/a246571.txt">Recurrence (of order 8)</a> %F A246571 a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-k-j+1,k)^2 * C(k,j)^2. %e A246571 G.f.: A(x) = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +... %e A246571 where %e A246571 A(x) = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2 %e A246571 + x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2 %e A246571 + x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +... %e A246571 The square-root of the g.f. is an integer series: %e A246571 A(x)^(1/2) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 + 858739*x^7 + 8517503*x^8 + 85867417*x^9 +...+ A246573(n)*x^n +... %t A246571 Table[Sum[Sum[Binomial[2*n-k-j+1,k]^2 * Binomial[k,j]^2,{j,0,k}],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 02 2014 *) %o A246571 (PARI) /* By definition: */ %o A246571 {a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)); polcoeff(A, n)} %o A246571 for(n=0, 35, print1(a(n), ", ")) %o A246571 (PARI) /* From a formula for a(n): */ %o A246571 {a(n)=sum(k=0, n, sum(j=0, min(k, 2*n-2*k+1), binomial(2*n-k-j+1, k)^2 * binomial(k, j)^2 ))} %o A246571 for(n=0, 25, print1(a(n), ", ")) %Y A246571 Cf. A246563, A246570, A246572, A246573. %K A246571 nonn %O A246571 0,2 %A A246571 _Paul D. Hanna_, Aug 30 2014