This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246573 #5 Aug 30 2014 21:13:21 %S A246573 1,3,15,125,1033,9385,88531,858739,8517503,85867417,877145957, %T A246573 9056393207,94337137375,990036525507,10456495695277,111048017798677, %U A246573 1185005002916425,12698840465721691,136594962042690591,1474203992211840997,15958236903892529399,173216891100594266403 %N A246573 G.f.: sqrt( Sum_{n>=0} x^n / (1-x)^(4*n+3) * [Sum_{k=0..2*n+1} C(2*n+1,k)^2 * x^k]^2 ). %C A246573 Self-convolution equals A246571. %e A246573 G.f.: A(x) = 1 + 3*x + 15*x^2 + 125*x^3 + 1033*x^4 + 9385*x^5 + 88531*x^6 +... %e A246573 such that %e A246573 A(x)^2 = 1/(1-x)^3 * (1 + x)^2 + x/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3)^2 %e A246573 + x^2/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2 %e A246573 + x^3/(1-x)^15 * (1 + 7^2*x + 21^2*x^2 + 35^2*x^3 + 35^2*x^4 + 21^2*x^5 + 7^2*x^6 + x^7)^2 +... %e A246573 Explicitly, %e A246573 A(x)^2 = 1 + 6*x + 39*x^2 + 340*x^3 + 3041*x^4 + 28718*x^5 + 279987*x^6 +...+ A246571(n)*x^n +... %o A246573 (PARI) /* By definition: */ %o A246573 {a(n)=local(A=1); A = sqrt( sum(m=0, n, x^m/(1-x)^(4*m+3) * sum(k=0, 2*m+1, binomial(2*m+1, k)^2 * x^k)^2 +x*O(x^n)) ); polcoeff(A, n)} %o A246573 for(n=0, 25, print1(a(n), ", ")) %Y A246573 Cf. A246563, A246570, A246571, A246572. %K A246573 nonn %O A246573 0,2 %A A246573 _Paul D. Hanna_, Aug 30 2014