cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246577 G.f.: (Product_{r>=1} (1 - x^r))*x^(k^2)/Product_{i=1..k} ((1 - x^i)^2) with k=3.

This page as a plain text file.
%I A246577 #8 Oct 13 2017 21:37:40
%S A246577 0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,1,-1,-3,-7,-10,-13,-16,-18,-18,-18,
%T A246577 -15,-11,-5,2,11,20,30,39,48,55,60,63,63,59,53,43,29,14,-5,-26,-47,
%U A246577 -69,-92,-111,-130,-146,-157,-164,-168,-163,-155,-141,-120,-94,-65,-28,10,51,95
%N A246577 G.f.: (Product_{r>=1} (1 - x^r))*x^(k^2)/Product_{i=1..k} ((1 - x^i)^2) with k=3.
%D A246577 Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70.
%p A246577 fGL:=proc(k) local a,i,r;
%p A246577 a:=x^(k^2)/mul((1-x^i)^2,i=1..k);
%p A246577 a:=a*mul(1-x^r,r=1..101);
%p A246577 series(a,x,101);
%p A246577 seriestolist(%);
%p A246577 end;fGL(3);
%Y A246577 k=0 gives A010815. Cf. A246575-A246578.
%K A246577 sign
%O A246577 0,12
%A A246577 _N. J. A. Sloane_, Aug 31 2014