This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246579 #5 Aug 31 2014 20:34:58 %S A246579 0,0,0,0,0,0,0,0,0,1,-1,2,-3,5,-7,11,-15,21,-29,39,-52,69,-90,116, %T A246579 -150,190,-241,303,-379,470,-583,716,-878,1071,-1302,1575,-1902,2285, %U A246579 -2739,3273,-3899,4631,-5489,6486,-7647,8996,-10557,12363,-14450,16853,-19618,22798,-26441 %N A246579 G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3. %D A246579 Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=3. %p A246579 fU:=proc(k) local a,i,r; %p A246579 a:=x^(k^2)/mul(1-x^(2*i),i=1..k); %p A246579 a:=a/mul(1+x^(2*r-1),r=1..101); %p A246579 series(a,x,101); %p A246579 seriestolist(%); %p A246579 end; %p A246579 fU(3); %Y A246579 k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246590. %K A246579 sign %O A246579 0,12 %A A246579 _N. J. A. Sloane_, Aug 31 2014