cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246580 G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=4.

This page as a plain text file.
%I A246580 #6 Aug 31 2014 20:39:09
%S A246580 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,2,-3,5,-7,11,-15,22,-30,41,-55,
%T A246580 74,-97,127,-165,212,-271,344,-434,544,-680,843,-1043,1283,-1573,1919,
%U A246580 -2336,2829,-3419,4116,-4942,5914,-7062,8405,-9983,11825,-13976,16479,-19392,22767
%N A246580 G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=4.
%D A246580 Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=4.
%p A246580 fU:=proc(k) local a,i,r;
%p A246580 a:=x^(k^2)/mul(1-x^(2*i),i=1..k);
%p A246580 a:=a/mul(1+x^(2*r-1),r=1..101);
%p A246580 series(a,x,101);
%p A246580 seriestolist(%);
%p A246580 end;
%p A246580 fU(4);
%Y A246580 k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246589.
%K A246580 sign
%O A246580 0,19
%A A246580 _N. J. A. Sloane_, Aug 31 2014