This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246581 #35 Oct 13 2017 21:30:09 %S A246581 0,0,0,1,0,1,-1,1,-2,1,-3,2,-4,3,-5,5,-6,7,-8,10,-10,13,-13,17,-17,21, %T A246581 -22,27,-28,33,-36,41,-45,50,-56,62,-69,75,-85,92,-103,111,-125,135, %U A246581 -150,162,-180,195,-215,232,-256,278,-303,329,-359,390,-423 %N A246581 G.f.: x^((k^2 + k)/2) / (Product_{i=1..k} (1 - x^i) * Product_{r>=1} (1 + x^r)) with k = 2. %C A246581 Empirical: 2*(-1)^n*a(n+1) is equal to the number of partitions mu of n such that the diagram of mu and the diagram of the transpose of mu have exactly n-1 cells in common (see below example). - _John M. Campbell_, Feb 01 2016 %H A246581 Vaclav Kotesovec, <a href="/A246581/b246581.txt">Table of n, a(n) for n = 0..5000</a> %H A246581 J. Fulman, <a href="http://dx.doi.org/10.1090/S0273-0979-01-00920-X">Random matrix theory over finite fields</a>, Bull. Amer. Math. Soc., 39 (No. 1, 2002), 51-85, MR1864086 (2002i:60012). See top of page 70, Eq. 3, with k=2. %F A246581 G.f.: x^3/((1-x)*(1-x^2)) * Product_{k>=1} 1/(1+x^k). - _Vaclav Kotesovec_, Mar 12 2016 %F A246581 a(n) ~ (-1)^(n+1) * 3^(1/4) * exp(sqrt(n/6)*Pi) / (2^(9/4)*Pi*n^(1/4)). - _Vaclav Kotesovec_, Mar 12 2016 %e A246581 From _John M. Campbell_, Feb 01 2016: (Start) %e A246581 For example, letting n=9, there are 2*(-1)^n*a(n+1) = (-2)*(-3) = 6 partitions mu of n=9 such that the diagram of mu and the diagram of the transpose of mu have exactly n-1 cells in common: (5,2,1,1), (4,3,2), (4,3,1,1), (4,2,2,1), (4,2,1,1,1), (3,3,2,1). For example, the diagram of (3,3,2,1) is %e A246581 ooo %e A246581 ooo %e A246581 oo %e A246581 o %e A246581 and the diagram of the transpose of (3,3,2,1) is %e A246581 oooo %e A246581 ooo %e A246581 oo %e A246581 and these diagrams share exactly (n-1)=8 cells in common, when the diagrams are positioned so that the upper-left corners of both diagrams coincide. (End) %p A246581 fSp:=proc(k) local a,i,r; %p A246581 a:=x^((k^2+k)/2)/mul(1-x^i,i=1..k); %p A246581 a:=a/mul(1+x^r,r=1..101); %p A246581 series(a,x,101); %p A246581 seriestolist(%); %p A246581 end; %p A246581 fSp(2); %t A246581 k = 2; CoefficientList[Series[x^((k^2 + k)/2)/(Product[1 - x^i, {i, k}] Product[1 + x^r, {r, 1000}]), {x, 0, 56}], x] (* _Michael De Vlieger_, Feb 01 2016 *) %Y A246581 For k=0 and 1 we get A081362, A027349 (apart from signs). %Y A246581 Cf. A218907, A246582, A246583. %K A246581 sign %O A246581 0,9 %A A246581 _N. J. A. Sloane_, Aug 31 2014