cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246584 Number of overcubic partitions of n.

This page as a plain text file.
%I A246584 #34 Oct 27 2022 12:04:58
%S A246584 1,2,6,12,26,48,92,160,282,470,784,1260,2020,3152,4896,7456,11290,
%T A246584 16836,24962,36556,53232,76736,110012,156384,221156,310482,433776,
%U A246584 602200,832224,1143696,1565088,2131072,2890266,3902344,5249356,7032576,9389022,12488368
%N A246584 Number of overcubic partitions of n.
%C A246584 Convolution of A001935 and A002513. - _Vaclav Kotesovec_, Aug 16 2019
%H A246584 Alois P. Heinz, <a href="/A246584/b246584.txt">Table of n, a(n) for n = 0..10000</a>
%H A246584 Michael D. Hirschhorn, <a href="https://www.thebookshelf.auckland.ac.nz/docs/NZJMaths/nzjmaths042/nzjmaths042-00-021.pdf">A note on overcubic partitions</a>, New Zealand J. Math., 42:229-234, 2012.
%H A246584 Bernard L. S. Lin, <a href="https://doi.org/10.37236/4400">Arithmetic properties of overcubic partition pairs</a>, Electronic Journal of Combinatorics 21(3) (2014), #P3.35.
%H A246584 James A. Sellers, <a href="https://ajc.maths.uq.edu.au/pdf/60/ajc_v60_p191.pdf">Elementary proofs of congruences for the cubic and overcubic partition functions</a>, Australasian Journal of Combinatorics, 60(2) (2014), 191-197.
%F A246584 G.f.: Product_{k>=1} (1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))). - _Vaclav Kotesovec_, Aug 16 2019
%F A246584 a(n) ~ 3^(3/4) * exp(sqrt(3*n/2)*Pi) / (2^(19/4)*n^(5/4)). - _Vaclav Kotesovec_, Aug 16 2019
%p A246584 # to get 140 terms:
%p A246584 ph:=add(q^(n^2),n=-12..12);
%p A246584 ph:=series(ph,q,140);
%p A246584 g1:=1/(subs(q=-q,ph)*subs(q=-q^2,ph));
%p A246584 g1:=series(g1,q,140);
%p A246584 seriestolist(%);
%p A246584 # second Maple program:
%p A246584 with(numtheory):
%p A246584 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
%p A246584       `if`(irem(d, 4)=2, 3, 2), d=divisors(j)), j=1..n)/n)
%p A246584     end:
%p A246584 seq(a(n), n=0..40);  # _Alois P. Heinz_, Aug 17 2019
%t A246584 nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) / ((1-x^k) * (1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 16 2019 *)
%t A246584 nmax = 50; CoefficientList[Series[Product[(1+x^(2*k)) / (1-x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 16 2019 *)
%Y A246584 Trisections: A246585, A246586, A246587.
%K A246584 nonn
%O A246584 0,2
%A A246584 _N. J. A. Sloane_, Sep 03 2014