This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246596 #38 Mar 15 2020 05:06:27 %S A246596 1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,1,1,1,2,1,1,2,5,2,2,2,4,5,5,14,42,1, %T A246596 1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,2,2,2,4,2,2,4,10,5,5,5,10,14,14,42, %U A246596 132,1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,1,1,1,2,1,1,2,5 %N A246596 Run Length Transform of Catalan numbers A000108. %C A246596 The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). %H A246596 Chai Wah Wu, <a href="/A246596/b246596.txt">Table of n, a(n) for n = 0..8192</a> %H A246596 <a href="/index/Ru#rlt">Index entries for sequences computed with run length transform</a> %F A246596 a(n) = A069739(A005940(1+n)). - _Antti Karttunen_, May 29 2017 %e A246596 From _Omar E. Pol_, Feb 15 2015: (Start) %e A246596 Written as an irregular triangle in which row lengths are the terms of A011782: %e A246596 1; %e A246596 1; %e A246596 1,2; %e A246596 1,1,2,5; %e A246596 1,1,1,2,2,2,5,14; %e A246596 1,1,1,2,1,1,2,5,2,2,2,4,5,5,14,42; %e A246596 1,1,1,2,1,1,2,5,1,1,1,2,2,2,5,14,2,2,2,4,2,2,4,10,5,5,5,10,14,14,42,132; %e A246596 ... %e A246596 Right border gives the Catalan numbers. This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000108. %e A246596 (End) %p A246596 Cat:=n->binomial(2*n,n)/(n+1); %p A246596 ans:=[]; %p A246596 for n from 0 to 100 do lis:=[]; t1:=convert(n, base, 2); L1:=nops(t1); out1:=1; c:=0; %p A246596 for i from 1 to L1 do %p A246596 if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1; %p A246596 elif out1 = 0 and t1[i] = 1 then c:=c+1; %p A246596 elif out1 = 1 and t1[i] = 0 then c:=c; %p A246596 elif out1 = 0 and t1[i] = 0 then lis:=[c, op(lis)]; out1:=1; c:=0; %p A246596 fi; %p A246596 if i = L1 and c>0 then lis:=[c, op(lis)]; fi; %p A246596 od: %p A246596 a:=mul(Cat(i), i in lis); %p A246596 ans:=[op(ans), a]; %p A246596 od: %p A246596 ans; %t A246596 f = CatalanNumber; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 87}] (* _Jean-François Alcover_, Jul 11 2017 *) %o A246596 (Python) %o A246596 from operator import mul %o A246596 from functools import reduce %o A246596 from gmpy2 import divexact %o A246596 from re import split %o A246596 def A246596(n): %o A246596 s, c = bin(n)[2:], [1, 1] %o A246596 for m in range(1, len(s)): %o A246596 c.append(divexact(c[-1]*(4*m+2),(m+2))) %o A246596 return reduce(mul,(c[len(d)] for d in split('0+',s))) if n > 0 else 1 %o A246596 # _Chai Wah Wu_, Sep 07 2014 %o A246596 (Sage) # uses[RLT from A246660] %o A246596 A246596_list = lambda len: RLT(lambda n: binomial(2*n, n)/(n+1), len) %o A246596 A246596_list(88) # _Peter Luschny_, Sep 07 2014 %o A246596 (Scheme) ; using MIT/GNU Scheme %o A246596 (define (A246596 n) (fold-left (lambda (a r) (* a (A000108 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2))))) %o A246596 (define A000108 (EIGEN-CONVOLUTION 1 *)) %o A246596 ;; Note: EIGEN-CONVOLUTION can be found from my IntSeq-library and other functions are as in A227349. - _Antti Karttunen_, Sep 08 2014 %Y A246596 Cf. A000108. %Y A246596 Cf. A003714 (gives the positions of ones). %Y A246596 Run Length Transforms of other sequences: A005940, A069739, A071053, A227349, A246588, A246595, A246660, A246661, A246674. %K A246596 nonn %O A246596 0,4 %A A246596 _N. J. A. Sloane_, Sep 06 2014