cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246599 Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.

This page as a plain text file.
%I A246599 #25 Feb 17 2024 04:02:35
%S A246599 10,840,257040,137214000,118248530400,154686980448000,
%T A246599 292276881344448000,766864651478365440000,2706292794907249067520000,
%U A246599 12512021073989410699165440000,74128448237031250090060032000000,552320243355746711191770103680000000,5092467146398443040845772685937408000000
%N A246599 Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.
%C A246599 R. C. Read incorrectly has a(7) = 118237555800 and a(8) = 154652926428000 which he calculated by hand.
%D A246599 R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
%H A246599 Andrew Howroyd, <a href="/A246599/b246599.txt">Table of n, a(n) for n = 3..50</a>
%H A246599 R. C. Read, <a href="/A002831/a002831.pdf">Letter to N. J. A. Sloane, Feb 04 1971</a> (gives initial terms of this sequence)
%F A246599 a(n) = binomial(2*n-1, n)*A001501(n) - Sum_{k=1..n-1} binomial(2*n-1, 2*k) * binomial(2*k, k) * A001501(k) * a(n-k). - _Andrew Howroyd_, May 22 2018
%F A246599 a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n + 2)). - _Vaclav Kotesovec_, Feb 17 2024
%t A246599 b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
%t A246599 a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}];
%t A246599 Table[a[n], {n, 3, 20}] (* _Jean-François Alcover_, Jul 07 2018, after _Andrew Howroyd_ *)
%o A246599 (PARI) \\ here b(n) is A001501
%o A246599 b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
%o A246599 seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ _Andrew Howroyd_, May 22 2018
%Y A246599 Cf. A001501, A002829, A004109, A006714.
%K A246599 nonn
%O A246599 3,1
%A A246599 _N. J. A. Sloane_, Sep 08 2014
%E A246599 a(7)-a(8) corrected and a(9)-a(12) computed with nauty by _Sean A. Irvine_, Jun 27 2017
%E A246599 Terms a(13) and beyond from _Andrew Howroyd_, May 22 2018