This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246611 #11 Jun 11 2024 01:39:08 %S A246611 1,0,0,0,6,120,2160,41160,866460,20294064,526680000,15036999120, %T A246611 468848156040,15859299473160,578619457031616,22654279249875000, %U A246611 947570269816868880,42174922731482980320,1990416896317283627520,99290011292792071612704,5220362654145754082460000 %N A246611 Number of endofunctions on [n] whose cycle lengths are multiples of 4. %H A246611 Alois P. Heinz, <a href="/A246611/b246611.txt">Table of n, a(n) for n = 0..300</a> %F A246611 E.g.f.: 1/(1-LambertW(-x)^4)^(1/4). - _Vaclav Kotesovec_, Sep 01 2014 %F A246611 a(n) ~ n^(n-3/8) * (sqrt(Pi) / (2^(1/8) * Gamma(1/8))) * (1 - 11 * sqrt(2/n) * Gamma(1/8) / (64 * Gamma(5/8))). - _Vaclav Kotesovec_, Sep 01 2014 %p A246611 with(combinat): %p A246611 b:= proc(n, i) option remember; `if`(n=0, 1, %p A246611 `if`(i>n, 0, add(b(n-i*j, i+4)*(i-1)!^j* %p A246611 multinomial(n, n-i*j, i$j)/j!, j=0..n/i))) %p A246611 end: %p A246611 a:= a->add(b(j, 4)*n^(n-j)*binomial(n-1, j-1), j=0..n): %p A246611 seq(a(n), n=0..20); %t A246611 CoefficientList[Series[1/(1-LambertW[-x]^4)^(1/4),{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Sep 01 2014 *) %Y A246611 Column k=4 of A246609. %K A246611 nonn %O A246611 0,5 %A A246611 _Alois P. Heinz_, Aug 31 2014