This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246612 #11 Jun 11 2024 01:39:05 %S A246612 1,0,0,0,0,24,720,17640,430080,11022480,302835456,8976567600, %T A246612 287236730880,9901354268520,366504424366080,14515574208519384, %U A246612 612912858447052800,27497080096591516320,1306520704652165775360,65556843230110158804960,3464412427539012262035456 %N A246612 Number of endofunctions on [n] whose cycle lengths are multiples of 5. %H A246612 Alois P. Heinz, <a href="/A246612/b246612.txt">Table of n, a(n) for n = 0..300</a> %F A246612 E.g.f.: 1/(1+LambertW(-x)^5)^(1/5). - _Vaclav Kotesovec_, Sep 01 2014 %F A246612 a(n) ~ n^(n-2/5) * 2^(2/5) * (sqrt(Pi) / (5^(1/5) * Gamma(1/10))) * (1 - 14 * sqrt(2/n) * Gamma(1/10) / (75 * Gamma(3/5))). - _Vaclav Kotesovec_, Sep 01 2014 %p A246612 with(combinat): %p A246612 b:= proc(n, i) option remember; `if`(n=0, 1, %p A246612 `if`(i>n, 0, add(b(n-i*j, i+5)*(i-1)!^j* %p A246612 multinomial(n, n-i*j, i$j)/j!, j=0..n/i))) %p A246612 end: %p A246612 a:= a->add(b(j, 5)*n^(n-j)*binomial(n-1, j-1), j=0..n): %p A246612 seq(a(n), n=0..25); %t A246612 CoefficientList[Series[1/(1+LambertW[-x]^5)^(1/5),{x,0,20}],x] * Range[0,20]! (* _Vaclav Kotesovec_, Sep 01 2014 *) %Y A246612 Column k=5 of A246609. %K A246612 nonn %O A246612 0,6 %A A246612 _Alois P. Heinz_, Aug 31 2014