cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.

This page as a plain text file.
%I A246654 #22 Aug 27 2022 17:22:11
%S A246654 0,1,0,1,1,0,3,2,1,0,10,7,3,1,0,43,30,13,4,1,0,225,157,68,21,5,1,0,
%T A246654 1393,972,421,130,31,6,1,0,9976,6961,3015,931,222,43,7,1,0,81201,
%U A246654 56660,24541,7578,1807,350,57,8,1,0,740785,516901,223884,69133,16485,3193,520,73,9,1,0
%N A246654 T(n,k) = 2*(K(n,2)*I(k,2) - (-1)^(n+k)*I(n,2)*K(k,2)), where I(n,x) and K(n,x) are Bessel functions; triangle read by rows for 0 <= k <= n.
%F A246654 T(n+k,k) = hypergeom([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4)* Pochhammer(k+1, n-1).
%F A246654 Recurrence: T(n,k) = T(n-2,k)+(n-1)*T(n-1,k), T(n,n)=0, T(n,n-1)=1.
%F A246654 T(n,k) = T(n,-k) = T(-n,k) = T(-n,-k).
%e A246654 T(n, k) as a rectangular matrix (for n >= 0). Only the lower infinite triangle (0 <= k <=n) constitutes the sequence although T(n,k) is defined for all (n,k) in Z^2.
%e A246654 [   0,    1,   -1,   3, -10,  43, -225, 1393, -9976]
%e A246654 [   1,    0,    1,  -2,   7, -30,  157, -972,  6961]
%e A246654 [   1,    1,    0,   1,  -3,  13,  -68,  421, -3015]
%e A246654 [   3,    2,    1,   0,   1,  -4,   21, -130,   931]
%e A246654 [  10,    7,    3,   1,   0,   1,   -5,   31,  -222]
%e A246654 [  43,   30,   13,   4,   1,   0,    1,   -6,    43]
%e A246654 [ 225,  157,   68,  21,   5,   1,    0,    1,    -7]
%e A246654 [1393,  972,  421, 130,  31,   6,    1,    0,     1]
%e A246654 [9976, 6961, 3015, 931, 222,  43,    7,    1,     0]
%e A246654 The diagonals d(n,k) = T(n+k-floor(n/2),k-floor(n/2)) are represented by polynomials described in A246656.
%e A246654    n\k:    0   1    2     3    4     p_n(x)
%e A246654 -------------------------------------------------------
%e A246654 d(0,k):    0,  0,   0,    0,   0, .. 0                   A000004
%e A246654 d(1,k):    1,  1,   1,    1,   1, .. 1                   A000012
%e A246654 d(2,k):  [0],  1,   2,    3,   4, .. x                   A001477
%e A246654 d(3,k):  [1],  3,   7,   13,  21, .. x^2+x+1             A002061
%e A246654 d(4,k):  [0,  2],  10,   30,  68, .. x^3+x               A034262
%e A246654 d(5,k):  [1,  7],  43,  157, 421, .. x^4+2*x^3+2*x^2+x+1
%p A246654 T := (n, k) -> (BesselK(n,2)*BesselI(k,2) - (-1)^(n+k)*BesselI(n,2) *BesselK(k,2))*2; seq(lprint(seq(round(evalf(T(n,k),99)), k=0..n)), n=0..8);
%p A246654 # Recurrence
%p A246654 T := proc(n,k) option remember; local m; m := n-1;
%p A246654 if  k > m or k < 0 then 0 elif k = m then 1 else T(m-1,k) + m*T(m,k) fi end:
%p A246654 seq(print(seq(T(n,k), k=0..n)), n=0..8);
%t A246654 T[n_, k_] := T[n, k] = With[{m = n - 1}, If[k > m || k < 0, 0, If[k == m, 1, T[m - 1, k] + m*T[m, k]]]];
%t A246654 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 03 2019 *)
%o A246654 (Sage)
%o A246654 def A246654_col(n, k): # k-th column of the triangle
%o A246654     if n < 2: return n
%o A246654     return hypergeometric([(1-n)/2, 1-n/2], [1-n, 1+k, 1-n-k], 4) *rising_factorial(k+1,n-1)
%o A246654 for k in range(6): [round(A246654_col(n,k).n(100)) for n in (0..10)]
%Y A246654 T(n+0,0) = A001040(n).
%Y A246654 T(n+1,1) = A001053(n+1).
%Y A246654 T(n+2,2) = A058307(n).
%Y A246654 T(n+3,3) = A058308(n).
%Y A246654 T(n+4,4) = A058309(n).
%Y A246654 Cf. A001040, A001053, A001477, A002061, A034262, A058307, A058308, A058309, A246656.
%K A246654 nonn,tabl
%O A246654 0,7
%A A246654 _Peter Luschny_, Sep 12 2014