This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246656 #12 Sep 16 2014 05:47:32 %S A246656 0,1,0,0,1,0,1,1,1,0,0,1,0,1,0,1,1,2,2,1,0,0,3,0,-1,0,1,0,1,8,5,-5,0, %T A246656 3,1,0,0,-18,0,29,0,-8,0,1,0,1,-80,-13,121,29,-35,-7,4,1,0,0,357,0, %U A246656 -513,0,182,0,-22,0,1,0,1,1865,344,-2686,-484,945,175,-114,-21,5,1,0 %N A246656 Triangle read by rows: T(n, k) is the coefficient of x^k of the polynomial p_n(x) representing the n-th diagonal of A246654. %e A246656 The first few polynomials and their coefficients: %e A246656 0; 0; %e A246656 1, 0; 1; %e A246656 0, 1, 0; x; %e A246656 1, 1, 1, 0; x*(x+1)+1; %e A246656 0, 1, 0, 1, 0; x*(x^2+1); %e A246656 1, 1, 2, 2, 1, 0; x*(x+1)*(x^2+x+1)+1; %e A246656 0, 3, 0, -1, 0, 1, 0; x*(x^4-x^2+3); %e A246656 1, 8, 5, -5, 0, 3, 1, 0; x*(x+1)*(x^4+2*x^3-2*x^2-3*x+8)+1; %e A246656 0,-18, 0, 29, 0, -8, 0, 1,0; x*(x^6-8*x^4+29*x^2-18); %e A246656 The values of some polynomials: %e A246656 ------------------------------------------------ %e A246656 n: -4 -3 -2 -1 0 1 2 3 %e A246656 ------------------------------------------------ %e A246656 p_0(n): 0, 0, 0, 0, 0, 0, 0, 0, A000004 %e A246656 p_1(n): 1, 1, 1, 1, 1, 1, 1, 1, A000012 %e A246656 p_2(n): -4, -3, -2, -1, 0, 1, 2, 3, A001477 %e A246656 p_3(n): 13, 7, 3, 1, 1, 3, 7, 13, A002061 %e A246656 p_4(n): -68, -30, -10, -2, 0, 2, 10, 30, A034262 %e A246656 p_5(n): 157, 43, 7, 1, 1, 7, 43, 157, %e A246656 p_6(n): -972, -225, -30, -3, 0, 3, 30, 225, %p A246656 with(Student[NumericalAnalysis]): %p A246656 poly := proc(n) local B; if n = 0 then return 0 fi; %p A246656 B := (n,k) -> round(evalf(2*(BesselK(n,2)*BesselI(k,2) %p A246656 -(-1)^(n+k)*BesselI(n,2)*BesselK(k,2)),64)); %p A246656 [seq([k+iquo(n,2),B(k+n,k)], k=-iquo(n,2)..n-1)]; %p A246656 PolynomialInterpolation(%, independentvar=x); %p A246656 expand(Interpolant(%)) end: %p A246656 A246656_row := n -> seq(coeff(poly(n),x,j), j=0..n); %p A246656 seq(print(A246656_row(n)), n=0..11); %Y A246656 Cf. A246654, A001477, A002061, A034262. %K A246656 tabl,sign %O A246656 0,18 %A A246656 _Peter Luschny_, Sep 13 2014