cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246658 Triangle read by rows: T(n,k) = K(n,1)*I(k,1) - (-1)^(n+k)*I(n,1)* K(k,1), where I(n,x) and K(n,x) are Bessel functions; 0<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 9, 4, 1, 0, 56, 25, 6, 1, 0, 457, 204, 49, 8, 1, 0, 4626, 2065, 496, 81, 10, 1, 0, 55969, 24984, 6001, 980, 121, 12, 1, 0, 788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0, 12667041, 5654440, 1358161, 221796, 27385, 2716, 225, 16, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 14 2014

Keywords

Examples

			     0;
     1,      0;
     2,      1,     0;
     9,      4,     1,     0;
    56,     25,     6,     1,    0;
   457,    204,    49,     8,    1,   0;
  4626,   2065,   496,    81,   10,   1,  0;
55969,  24984,  6001,   980,  121,  12,  1, 0;
788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> BesselK(n,1)*BesselI(k,1) - (-1)^(n+k)*BesselI(n,1)* BesselK(k,1);
    seq(lprint(seq(round(evalf(T(n, k), 99)), k=0..n)), n=0..8);
  • Sage
    T = lambda n, k: bessel_K(n,1)*bessel_I(k,1) - (-1)^(n+k)*bessel_I(n,1)* bessel_K(k,1)
    for n in range(9): [T(n,k).n().round() for k in (0..n)]

Formula

T(n, 0) = A036243(n-1) for n>=2.
T(n, 1) = A036242(n-1) for n>=2.