cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246659 a(n) = binomial(n-h,h)*hypergeometric([h-n/2,h-(n-1)/2],[1],4), h = floor(n/4).

Original entry on oeis.org

1, 1, 3, 7, 9, 28, 95, 306, 285, 1071, 3948, 14148, 11844, 47160, 182655, 690580, 547965, 2244385, 8961953, 35016345, 26885859, 112052304, 456606332, 1824478488, 1369818996, 5777515212, 23884958520, 97002706248, 71654875560, 304865648208, 1273989485439
Offset: 0

Views

Author

Peter Luschny, Sep 18 2014

Keywords

Comments

Also middle column of A132885.
a(n) is the k-th term of n-th row of triangle of A132885 where k = floor(n/4). - Altug Alkan, Nov 29 2015

Crossrefs

Cf. A132885.

Programs

  • Maple
    a := proc(n) local h; h := iquo(n,4); binomial(n-h,h)*hypergeom([h-n/2, h-n/2+1/2],[1],4) end: seq(round(evalf(a(n),99)),n=0..30);
  • Mathematica
    a[n_] := With[{h = Quotient[n, 4]}, Binomial[n-h, h]*Hypergeometric2F1[h-n/2, h-(n-1)/2, 1, 4]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2024 *)

Formula

a(n) = A132885(n, floor(n/4)), that is, a(n) = A132885(A054925(n+2) - 1). - Altug Alkan, Nov 29 2015