A246659 a(n) = binomial(n-h,h)*hypergeometric([h-n/2,h-(n-1)/2],[1],4), h = floor(n/4).
1, 1, 3, 7, 9, 28, 95, 306, 285, 1071, 3948, 14148, 11844, 47160, 182655, 690580, 547965, 2244385, 8961953, 35016345, 26885859, 112052304, 456606332, 1824478488, 1369818996, 5777515212, 23884958520, 97002706248, 71654875560, 304865648208, 1273989485439
Offset: 0
Keywords
Crossrefs
Cf. A132885.
Programs
-
Maple
a := proc(n) local h; h := iquo(n,4); binomial(n-h,h)*hypergeom([h-n/2, h-n/2+1/2],[1],4) end: seq(round(evalf(a(n),99)),n=0..30);
-
Mathematica
a[n_] := With[{h = Quotient[n, 4]}, Binomial[n-h, h]*Hypergeometric2F1[h-n/2, h-(n-1)/2, 1, 4]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2024 *)
Formula
a(n) = A132885(n, floor(n/4)), that is, a(n) = A132885(A054925(n+2) - 1). - Altug Alkan, Nov 29 2015
Comments