cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246661 Run Length Transform of swinging factorials (A056040).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1, 2, 6, 2, 2, 2, 4, 6, 6, 6, 30, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 2, 2, 2, 4, 2, 2, 4, 12, 6, 6, 6, 12, 6, 6, 30, 20, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 6, 6, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Peter Luschny, Sep 07 2014

Keywords

Comments

For the definition of the Run Length Transform see A246595.

Crossrefs

Programs

  • Mathematica
    f[n_] := n!/Quotient[n, 2]!^2; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 85}] (* Jean-François Alcover, Jul 11 2017 *)
  • Python
    # use RLT function from A278159
    from math import factorial
    def A246661(n): return RLT(n,lambda m: factorial(m)//factorial(m//2)**2) # Chai Wah Wu, Feb 04 2022
  • Sage
    # uses[RLT from A246660]
    A246661_list = lambda len: RLT(lambda n: factorial(n)/factorial(n//2)^2, len)
    A246661_list(88)
    

Formula

a(2^n-1) = n$ where n$ is the swinging factorial of n, A056040(n).