cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246663 Products of swinging factorials A056040.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 24, 30, 32, 36, 40, 48, 60, 64, 70, 72, 80, 96, 120, 128, 140, 144, 160, 180, 192, 216, 240, 252, 256, 280, 288, 320, 360, 384, 400, 420, 432, 480, 504, 512, 560, 576, 600, 630, 640, 720, 768, 800, 840, 864, 900, 960, 1008, 1024
Offset: 1

Views

Author

Peter Luschny, Sep 09 2014

Keywords

Crossrefs

Cf. A001013 is a sublist.

Programs

  • Mathematica
    sw[n_] := n!/(Floor[n/2]!)^2; lim = 40; For[p = 0; a = f = Table[sw[n], {n, lim}], p =!= a, p = a; a = Select[Union@@Outer[Times, f, a], #<= sw[lim]&]]; a (* Hans Havermann, Sep 09 2014 *)
  • Sage
    # For example prod_hull(A008578) are the natural numbers.
    def prod_hull(f, K):
        S = []; newS = []
        n = 0
        while f(n) <= K:
            newS.append(f(n))
            n += 1
        while newS != S:
            S = newS; T = []
            for s in S:
                M = map(lambda n: n*s , S)
                T.extend(filter(lambda n: n <= K, M))
            newS = Set(T).union(Set(S))
        return sorted(newS)
    prod_hull(lambda n: factorial(n)/factorial(n//2)^2, 1024)