A246663 Products of swinging factorials A056040.
1, 2, 4, 6, 8, 12, 16, 20, 24, 30, 32, 36, 40, 48, 60, 64, 70, 72, 80, 96, 120, 128, 140, 144, 160, 180, 192, 216, 240, 252, 256, 280, 288, 320, 360, 384, 400, 420, 432, 480, 504, 512, 560, 576, 600, 630, 640, 720, 768, 800, 840, 864, 900, 960, 1008, 1024
Offset: 1
Crossrefs
Cf. A001013 is a sublist.
Programs
-
Mathematica
sw[n_] := n!/(Floor[n/2]!)^2; lim = 40; For[p = 0; a = f = Table[sw[n], {n, lim}], p =!= a, p = a; a = Select[Union@@Outer[Times, f, a], #<= sw[lim]&]]; a (* Hans Havermann, Sep 09 2014 *)
-
Sage
# For example prod_hull(A008578) are the natural numbers. def prod_hull(f, K): S = []; newS = [] n = 0 while f(n) <= K: newS.append(f(n)) n += 1 while newS != S: S = newS; T = [] for s in S: M = map(lambda n: n*s , S) T.extend(filter(lambda n: n <= K, M)) newS = Set(T).union(Set(S)) return sorted(newS) prod_hull(lambda n: factorial(n)/factorial(n//2)^2, 1024)