cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246664 Decimal expansion of 'a', an auxiliary constant associated with the asymptotic probability of success in the secretary problem when the number of applicants is uniformly distributed.

This page as a plain text file.
%I A246664 #15 Feb 16 2025 08:33:23
%S A246664 2,1,1,9,8,2,4,4,0,9,8,9,2,0,6,3,6,4,9,4,6,4,0,0,5,3,8,3,0,0,7,4,0,9,
%T A246664 1,5,4,5,5,4,4,6,3,9,6,3,2,5,3,4,1,9,8,5,4,0,9,2,0,2,7,5,4,2,6,7,6,2,
%U A246664 7,7,4,3,8,7,1,8,5,4,8,7,9,8,2,3,9,8,7,3,8,6,2,6,6,3,0,3,2,3,8,9
%N A246664 Decimal expansion of 'a', an auxiliary constant associated with the asymptotic probability of success in the secretary problem when the number of applicants is uniformly distributed.
%D A246664 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
%H A246664 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 45.
%H A246664 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>
%H A246664 Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.
%F A246664 e^a*(1 - gamma - log(a) + Ei(-a)) - (gamma + log(a) - Ei(a)) = 1, where gamma is Euler's constant and Ei is the exponential integral function.
%e A246664 2.119824409892063649464005383007409154554463963253419854092...
%t A246664 a /. FindRoot[E^a*(1 - EulerGamma - Log[a] + ExpIntegralEi[-a]) - (EulerGamma + Log[a] - ExpIntegralEi[a]) == 1, {a, 2}, WorkingPrecision -> 100] // RealDigits // First
%Y A246664 Cf. A246665.
%K A246664 nonn,cons,easy
%O A246664 1,1
%A A246664 _Jean-François Alcover_, Sep 01 2014