cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246665 Decimal expansion of the asymptotic probability of success in the full-information secretary problem with uniform distribution when the number of applicants is also uniformly distributed.

Original entry on oeis.org

4, 3, 5, 1, 7, 0, 8, 0, 5, 5, 8, 0, 1, 2, 7, 6, 5, 8, 0, 5, 9, 1, 8, 9, 9, 1, 2, 8, 4, 7, 8, 5, 8, 4, 1, 0, 4, 2, 7, 9, 6, 2, 5, 9, 4, 7, 5, 3, 4, 7, 0, 2, 4, 7, 0, 2, 9, 7, 9, 1, 2, 3, 0, 4, 4, 3, 9, 0, 6, 6, 5, 8, 7, 5, 4, 4, 3, 0, 3, 3, 5, 7, 8, 4, 9, 9, 7, 6, 6, 2, 8, 6, 8, 5, 0, 2, 6, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Sep 01 2014

Keywords

Comments

In this variant of the secretary problem, the applicants' values are independently distributed on a known interval, like in A242674; and the number of applicants is itself a random variable with uniform distribution on 1..n (and then the limit n -> infinity is taken), like in A325905. So we have more information than in the variant considered in A325905 but less information than in the variant considered in A242674. Hence A325905 < this constant < A242674. - Andrey Zabolotskiy, Sep 14 2019

Examples

			0.43517080558012765805918991284785841042796259475347024702979123...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.

Crossrefs

Programs

  • Mathematica
    a = x /. FindRoot[E^x*(1 - EulerGamma - Log[x] + ExpIntegralEi[-x]) - (EulerGamma + Log[x] - ExpIntegralEi[x]) == 1, {x, 2}, WorkingPrecision -> 102]; (1 - E^a)*ExpIntegralEi[-a] - (E^-a + a*ExpIntegralEi[-a])*(EulerGamma + Log[a] - ExpIntegralEi[a]) // RealDigits // First

Formula

(1 - e^a)*Ei(-a) - (e^(-a) + a*Ei(-a))*(gamma + log(a) - Ei(a)), where a is A246664, gamma is Euler's constant and Ei is the exponential integral function.