A246665 Decimal expansion of the asymptotic probability of success in the full-information secretary problem with uniform distribution when the number of applicants is also uniformly distributed.
4, 3, 5, 1, 7, 0, 8, 0, 5, 5, 8, 0, 1, 2, 7, 6, 5, 8, 0, 5, 9, 1, 8, 9, 9, 1, 2, 8, 4, 7, 8, 5, 8, 4, 1, 0, 4, 2, 7, 9, 6, 2, 5, 9, 4, 7, 5, 3, 4, 7, 0, 2, 4, 7, 0, 2, 9, 7, 9, 1, 2, 3, 0, 4, 4, 3, 9, 0, 6, 6, 5, 8, 7, 5, 4, 4, 3, 0, 3, 3, 5, 7, 8, 4, 9, 9, 7, 6, 6, 2, 8, 6, 8, 5, 0, 2, 6, 5, 9
Offset: 0
Examples
0.43517080558012765805918991284785841042796259475347024702979123...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, Sec. 5.15 Optimal Stopping Constants, pp. 53-55, arXiv:2001.00578 [math.HO], 2020.
- Zdzisław Porosiński, On best choice problems having similar solutions, Statistics & Probability Letters, 56 (2002), 321-327.
- Eric Weisstein's MathWorld, Sultan's Dowry Problem
- Wikipedia, Secretary problem
Programs
-
Mathematica
a = x /. FindRoot[E^x*(1 - EulerGamma - Log[x] + ExpIntegralEi[-x]) - (EulerGamma + Log[x] - ExpIntegralEi[x]) == 1, {x, 2}, WorkingPrecision -> 102]; (1 - E^a)*ExpIntegralEi[-a] - (E^-a + a*ExpIntegralEi[-a])*(EulerGamma + Log[a] - ExpIntegralEi[a]) // RealDigits // First
Formula
(1 - e^a)*Ei(-a) - (e^(-a) + a*Ei(-a))*(gamma + log(a) - Ei(a)), where a is A246664, gamma is Euler's constant and Ei is the exponential integral function.
Comments