A246667 Decimal expansion of 'b', an auxiliary constant associated with the asymptotic probability of success in the full information version of the secretary problem.
1, 3, 4, 5, 0, 1, 6, 6, 1, 7, 0, 2, 1, 9, 9, 6, 9, 8, 4, 4, 9, 0, 5, 7, 9, 9, 1, 9, 9, 9, 8, 6, 9, 1, 5, 0, 1, 5, 3, 8, 7, 5, 8, 4, 2, 0, 6, 0, 6, 3, 6, 7, 5, 4, 1, 6, 2, 8, 7, 2, 6, 1, 0, 5, 7, 9, 1, 3, 1, 4, 6, 4, 9, 5, 5, 9, 7, 2, 0, 5, 8, 8, 3, 9, 0, 5, 8, 1, 8, 7, 3, 7, 8, 3, 8, 9, 8, 6, 5, 9, 4
Offset: 1
Examples
1.3450166170219969844905799199986915015387584206063675416287261...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants. p. 45.
- Eric Weisstein's MathWorld, Sultan's Dowry Problem.
- Wikipedia, Secretary problem.
Crossrefs
Cf. A246668.
Programs
-
Mathematica
b /. FindRoot[ExpIntegralEi[-b] - EulerGamma - Log[b] == -1, {b, 2}, WorkingPrecision -> 101] // RealDigits // First
Formula
Ei(-b) - gamma - log(b) = -1, where gamma is Euler's constant and Ei is the exponential integral function.