cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246668 Decimal expansion of the asymptotic probability of success in the full information version of the secretary problem.

This page as a plain text file.
%I A246668 #14 Feb 16 2025 08:33:23
%S A246668 4,4,9,2,4,7,2,1,8,8,6,9,2,1,6,2,7,1,2,2,9,8,7,9,3,9,4,3,7,9,7,0,9,2,
%T A246668 6,7,5,0,4,8,5,8,7,3,6,3,6,9,4,5,9,4,6,4,8,6,8,4,1,3,7,4,7,6,4,4,9,3,
%U A246668 5,5,5,8,6,7,2,6,3,2,6,4,2,4,5,5,4,8,0,4,3,7,2,7,6,8,7,6,8,4,1,5,1
%N A246668 Decimal expansion of the asymptotic probability of success in the full information version of the secretary problem.
%D A246668 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
%H A246668 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 45.
%H A246668 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>
%H A246668 Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.
%F A246668 e^(-b) - (e^b - b - 1)*Ei(-b), where b is A246667 and Ei is the exponential integral function.
%e A246668 0.4492472188692162712298793943797092675048587363694594648684...
%t A246668 b = x /. FindRoot[ExpIntegralEi[-x] - EulerGamma - Log[x] == -1, {x, 2}, WorkingPrecision -> 102]; E^-b - (E^b - b - 1)*ExpIntegralEi[-b] // RealDigits // First
%Y A246668 Cf. A246667.
%K A246668 nonn,cons,easy
%O A246668 0,1
%A A246668 _Jean-François Alcover_, Sep 01 2014