cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246671 Decimal expansion of Shepp's constant 'alpha', an optimal stopping constant associated with the case of a zero mean and unit variance distribution function.

This page as a plain text file.
%I A246671 #17 Feb 16 2025 08:33:23
%S A246671 8,3,9,9,2,3,6,7,5,6,9,2,3,7,2,6,8,9,6,0,3,7,7,6,9,7,7,4,2,1,8,1,5,5,
%T A246671 6,9,3,6,1,6,2,0,6,9,8,7,0,3,9,1,2,8,5,0,4,1,5,8,2,7,2,1,6,3,6,0,9,0,
%U A246671 8,9,6,8,6,3,9,5,3,4,6,3,8,0,6,3,8,8,0,2,0,9,6,4,6,8,0,9,7,9,9,9,9,5,8
%N A246671 Decimal expansion of Shepp's constant 'alpha', an optimal stopping constant associated with the case of a zero mean and unit variance distribution function.
%D A246671 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.
%H A246671 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 45.
%H A246671 L. A. Shepp, <a href="http://stat.wharton.upenn.edu/~shepp/publications/19.pdf">Explicit Solutions to Some Problems of Optimal Stopping.</a>
%H A246671 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>
%H A246671 Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.
%F A246671 Unique zero of 2*x - sqrt(2*Pi)*(1 - x^2)*exp(x^2/2)*(1 + erf(x/sqrt(2))).
%e A246671 0.83992367569237268960377697742181556936162069870391285...
%t A246671 x /. FindRoot[2*x - Sqrt[2*Pi]*(1 - x^2)*Exp[x^2/2]*(1 + Erf[x/Sqrt[2]]) == 0, {x, 1}, WorkingPrecision -> 103] // RealDigits // First
%Y A246671 Cf. A246664, A246665, A246667, A246668.
%K A246671 nonn,cons,easy
%O A246671 0,1
%A A246671 _Jean-François Alcover_, Sep 01 2014