This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246674 #29 Feb 04 2022 11:18:50 %S A246674 1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31,1, %T A246674 1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,3,3,3,9,3,3,9,21,7,7,7,21,15,15,31,63, %U A246674 1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31,3,3,3,9,3,3,9,21,3,3,3,9,9,9,21,45,7,7,7,21,7,7,21,49,15,15,15,45,31,31,63,127,1 %N A246674 Run Length Transform of A000225. %C A246674 a(n) can be also computed by replacing all consecutive runs of zeros in the binary expansion of n with * (multiplication sign), and then performing that multiplication, still in binary, after which the result is converted into decimal. See the example below. %H A246674 Antti Karttunen, <a href="/A246674/b246674.txt">Table of n, a(n) for n = 0..8192</a> %F A246674 For all n >= 0, a(A051179(n)) = A247282(A051179(n)) = A051179(n). %e A246674 115 is '1110011' in binary. The run lengths of 1-runs are 2 and 3, thus a(115) = A000225(2) * A000225(3) = ((2^2)-1) * ((2^3)-1) = 3*7 = 21. %e A246674 The same result can be also obtained more directly, by realizing that '111' and '11' are the binary representations of 7 and 3, and 7*3 = 21. %e A246674 From _Omar E. Pol_, Feb 15 2015: (Start) %e A246674 Written as an irregular triangle in which row lengths are the terms of A011782: %e A246674 1; %e A246674 1; %e A246674 1,3; %e A246674 1,1,3,7; %e A246674 1,1,1,3,3,3,7,15; %e A246674 1,1,1,3,1,1,3,7,3,3,3,9,7,7,15,31; %e A246674 1,1,1,3,1,1,3,7,1,1,1,3,3,3,7,15,3,3,3,9,3,3,9,21,7,7,7,21,15,15,31,63; %e A246674 ... %e A246674 Right border gives 1 together with the positive terms of A000225. %e A246674 (End) %t A246674 f[n_] := 2^n - 1; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 100}] (* _Jean-François Alcover_, Jul 11 2017 *) %o A246674 (MIT/GNU Scheme) %o A246674 (define (A246674 n) (fold-left (lambda (a r) (* a (A000225 r))) 1 (bisect (reverse (binexp->runcount1list n)) (- 1 (modulo n 2))))) %o A246674 (define (A000225 n) (- (A000079 n) 1)) %o A246674 (define (A000079 n) (expt 2 n)) %o A246674 ;; Other functions as in A227349. %o A246674 (Python) %o A246674 # uses RLT function in A278159 %o A246674 def A246674(n): return RLT(n,lambda m: 2**m-1) # _Chai Wah Wu_, Feb 04 2022 %Y A246674 Cf. A003714 (gives the positions of ones). %Y A246674 Cf. A000225, A051179. %Y A246674 A001316 is obtained when the same transformation is applied to A000079, the powers of two. %Y A246674 Run Length Transforms of other sequences: A071053, A227349, A246588, A246595, A246596, A246660, A246661, A246685, A247282. %K A246674 nonn,base %O A246674 0,4 %A A246674 _Antti Karttunen_, Sep 08 2014