A246686 Decimal expansion of 'mu', a percolation constant associated with the asymptotic threshold for 3-dimensional bootstrap percolation.
4, 0, 3, 9, 1, 2, 7, 2, 0, 2, 9, 8, 7, 5, 5, 8, 3, 7, 9, 3, 2, 1, 1, 4, 2, 0, 7, 4, 4, 9, 5, 3, 4, 9, 8, 8, 7, 1, 0, 2, 7, 1, 9, 2, 9, 3, 7, 7, 5, 4, 3, 2, 6, 4, 4, 1, 1, 4, 4, 6, 8, 8, 4, 6, 3, 3, 6, 8, 6, 3, 0, 7, 0, 1, 2, 9, 4, 0, 2, 3, 6, 5, 9, 3, 7, 6, 9, 6, 2, 1, 6, 8, 0, 6, 4, 3, 0, 5, 0, 5, 4
Offset: 0
Examples
0.4039127202987558379321142074495349887102719293775432644...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.18 Percolation Cluster Density Constants, pp. 371-378.
Links
- J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in three dimensions. arXiv:0806.4485 [math.CO], 2008-2009.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2024; p. 47.
- Eric Weisstein's MathWorld, Bootstrap Percolation
Crossrefs
Cf. A086463 (analog 2-dimensional percolation constant).
Programs
-
Mathematica
mu = -NIntegrate[Log[1/2 - Exp[-2*x]/2 + (1/2)*Sqrt[1 + Exp[-4*x] - 4*Exp[-3*x] + 2 *Exp[-2*x]]] , {x, 0, Infinity}, WorkingPrecision -> 101]; RealDigits[mu] // First
Formula
Equals -Integral_{0..oo} log(1/2 - exp(-2*x)/2 + (1/2)*sqrt(1 + exp(-4*x) - 4*exp(-3*x) + 2*exp(-2*x))) dx.