cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246696 Triangle t(n,k) = t(n,k-2) + 2 if n > 1 and 2 <= k <= n; t(0,0) = 1, t(1,0) = 2, t(1,1) = 3; if n > 1 is odd, then t(n,0) = t(n-1,n-2) + 2 and t(n,1) = t(n-1,n-1) + 2; if n > 1 is even, then t(n,0) = t(n-1,n-1) + 2 and t(n,1) = t(n-1,n-2) + 2.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 9, 8, 11, 13, 10, 15, 12, 17, 14, 19, 16, 21, 18, 23, 25, 20, 27, 22, 29, 24, 31, 26, 33, 28, 35, 30, 37, 32, 39, 41, 34, 43, 36, 45, 38, 47, 40, 49, 42, 51, 44, 53, 46, 55, 48, 57, 50, 59, 61, 52, 63, 54, 65, 56, 67, 58, 69, 60, 71, 62
Offset: 0

Views

Author

Clark Kimberling, Sep 17 2014

Keywords

Comments

As an array, for each m, row 2*m has m even numbers and [(m+1)/2] odd numbers, and row 2*m-1 has m odds and m evens. Every positive number occurs exactly once, so that as a sequence (with offset 1), this is a permutation of the positive integers, with inverse A246698.

Examples

			First 8 rows:
1
2 ... 3
5 ... 4 ... 7
6 ... 9 ... 8 ... 11
13 .. 10 .. 15 .. 12 .. 17
14 .. 19 .. 16 .. 21 .. 18 .. 23
25 .. 20 .. 27 .. 22 .. 29 .. 24 .. 31
26 .. 33 .. 28 .. 35 .. 30 .. 37 .. 32 .. 39
		

Crossrefs

Cf. A246697 (row sums), A246698 (inverse permutation), A246694.
Cf. A001844, A047838 (main diagonal), A128174 (parity).

Programs

  • Mathematica
    z = 25; t[0, 0] = 1; t[1, 0] = 2; t[1, 1] = 3; t[n_, 0] := t[n, 0] = If[OddQ[n], t[n - 1, n - 2] + 2, t[n - 1, n - 1] + 2]; t[n_, 1] := t[n, 1] = If[OddQ[n], t[n - 1, n - 1] + 2, t[n - 1, n - 2] + 2]; t[n_, k_] := t[n, k] = t[n, k - 2] + 2;
    u = Flatten[Table[t[n, k], {n, 0, z}, {k, 0, n}]] (* A246696 *)

Formula

For m >= 0, {t(2*m,0)} = A001844. - Ruud H.G. van Tol, Sep 30 2024

Extensions

Edited by M. F. Hasler, Nov 17 2014