This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A246716 #84 Aug 31 2024 03:09:15 %S A246716 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,30,31,32, %T A246716 36,37,40,41,42,43,44,45,47,48,49,50,52,53,54,56,59,60,61,63,64,66,67, %U A246716 68,70,71,72,73,75,76,78,79,80,81,83,84,88,89,90,92,96,97,98,99,100 %N A246716 Positive numbers that are not the product of (exactly) two distinct primes. %C A246716 Non-disjoint union of A100959 and A000961. Disjoint union of A100959 and A001248. %C A246716 Complement of A006881, then inheriting the "opposite" of the properties of A006881. %C A246716 a(n+1) - a(n) <= 4 (gap upper bound) - (that is because among four consecutive integers there is always a multiple of 4, then there is a number which is not the product of two distinct primes). E.g., a(26)-a(25) = a(62)-a(61) = 4. Is it true that for any k <= 4 there are infinitely many numbers n such that a(n+1) - a(n) = k? %C A246716 If r = A006881(n+1) - A006881(n) - 1 > 1, it indicates that there are r terms of (a(j)) starting with j = A006881(n) - n + 1 which are consecutive integers. E.g., A006881(8) - A006881(7) - 1 = 6, so there are 6 consecutive terms in (a(j)), starting with j = A006881(7) - 7 + 1 = 20. %H A246716 Giuseppe Coppoletta, <a href="/A246716/b246716.txt">Table of n, a(n) for n = 1..10000</a> %e A246716 7 is a term because 7 is prime, so it has only one prime divisor. %e A246716 8 and 9 are terms because neither of them has two distinct prime divisors. %e A246716 30 is a term because it is the product of three primes. %e A246716 But 35 is not a term because it is the product of two distinct primes. %p A246716 filter:= n -> map(t -> t[2],ifactors(n)[2]) <> [1,1]: %p A246716 select(filter, [$1..1000]); # _Robert Israel_, Nov 02 2014 %t A246716 Select[Range[125], Not[PrimeOmega[#] == PrimeNu[#] == 2] &] (* _Alonso del Arte_, Nov 03 2014 *) %o A246716 (PARI) isok(n) = (omega(n)!=2) || (bigomega(n) != 2); \\ _Michel Marcus_, Nov 01 2014 %o A246716 (Magma) [n: n in [1..100] | #PrimeDivisors(n) ne 2 or &*[t[2]: t in Factorization(n)] ne 1]; // _Bruno Berselli_, Nov 12 2014 %o A246716 (Sage) %o A246716 def A246716_list(n) : %o A246716 R = [] %o A246716 for i in (1..n) : %o A246716 d = prime_divisors(i) %o A246716 if len(d) != 2 or d[0]*d[1] != i : R.append(i) %o A246716 return R %o A246716 A246716_list(100) %o A246716 (Sage) [n for n in (1..100) if sloane.A001221(n)!=2 or sloane.A001222(n)!=2] # _Giuseppe Coppoletta_, Jan 19 2015 %o A246716 (Python) %o A246716 from math import isqrt %o A246716 from sympy import primepi, primerange %o A246716 def A246716(n): %o A246716 def f(x): return int(n-(t:=primepi(s:=isqrt(x)))-(t*(t-1)>>1)+sum(primepi(x//k) for k in primerange(1, s+1))) %o A246716 def bisection(f,kmin=0,kmax=1): %o A246716 while f(kmax) > kmax: kmax <<= 1 %o A246716 while kmax-kmin > 1: %o A246716 kmid = kmax+kmin>>1 %o A246716 if f(kmid) <= kmid: %o A246716 kmax = kmid %o A246716 else: %o A246716 kmin = kmid %o A246716 return kmax %o A246716 return bisection(f) # _Chai Wah Wu_, Aug 30 2024 %Y A246716 Cf. A001358, A100959, A006881, A007774, A001221, A001222, A007304, A000977, A001248, A000961. %K A246716 nonn,easy %O A246716 1,2 %A A246716 _Giuseppe Coppoletta_, Nov 01 2014