A246727 Decimal expansion of r_5, the 5th smallest radius < 1 for which a compact packing of the plane exists, with disks of radius 1 and r_5.
3, 8, 6, 1, 0, 6, 1, 0, 4, 8, 5, 8, 5, 3, 8, 5, 4, 2, 2, 8, 6, 1, 3, 7, 1, 2, 9, 9, 4, 6, 9, 8, 9, 6, 9, 9, 4, 4, 3, 6, 1, 4, 6, 8, 8, 4, 5, 8, 6, 1, 7, 3, 1, 7, 7, 8, 9, 3, 9, 4, 0, 4, 2, 1, 4, 8, 3, 7, 6, 2, 8, 4, 4, 6, 6, 7, 6, 1, 8, 6, 2, 1, 2, 8, 9, 2, 4, 4, 6, 0, 4, 4, 1, 4, 6, 7, 3, 6, 0, 3, 9, 7, 4, 3
Offset: 0
Examples
0.3861061048585385422861371299469896994436146884586173...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2021, p. 73.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Mathematica
RealDigits[Root[9x^4 - 12x^3 - 26x^2 - 12x + 9, x, 1], 10, 104] // First
-
PARI
(1 + 2*sqrt(3) - 2*sqrt(1 + sqrt(3)))/3 \\ Charles R Greathouse IV, Feb 10 2025
Formula
1st root of 9x^4 - 12x^3 - 26x^2 - 12x + 9.
Equals (1 + 2*sqrt(3) - 2*sqrt(1 + sqrt(3)))/3. - Amiram Eldar, Mar 27 2022