A246732 Number of length n+4 0..3 arrays with no pair in any consecutive five terms totalling exactly 3.
124, 260, 548, 1156, 2436, 5132, 10812, 22780, 47996, 101124, 213060, 448900, 945796, 1992716, 4198492, 8845884, 18637564, 39267844, 82734180, 174314244, 367266052, 773799948, 1630334076, 3434982396, 7237230844, 15248261636
Offset: 1
Keywords
Examples
Some solutions for n=4: ..2....3....0....1....0....1....2....1....0....1....3....1....2....3....1....0 ..3....1....1....1....2....0....3....1....2....1....3....3....3....1....1....0 ..2....1....0....3....2....0....3....1....2....1....3....1....3....3....3....0 ..2....3....0....1....2....0....3....1....2....1....1....3....3....3....3....0 ..2....3....1....3....0....1....3....1....0....1....3....1....3....3....3....2 ..2....3....1....3....0....0....2....1....2....3....1....1....3....3....3....0 ..2....1....1....3....2....0....3....1....2....1....3....1....1....3....1....2 ..0....1....1....3....2....0....2....0....2....3....1....3....1....1....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A246737.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-4).
Empirical g.f.: 4*x*(31 + 3*x + 7*x^2 + 15*x^3) / (1 - 2*x - x^4). - Colin Barker, Nov 06 2018