A246733 Number of length n+4 0..4 arrays with no pair in any consecutive five terms totalling exactly 4.
424, 1096, 2884, 7612, 19992, 52112, 135776, 354428, 926912, 2426008, 6344712, 16581304, 43323852, 113217276, 295956684, 773719596, 2022600900, 5286817120, 13818445276, 36118847720, 94411371892, 246786721208, 645084592792
Offset: 1
Keywords
Examples
Some solutions for n=4 ..3....3....4....0....1....2....1....3....3....1....4....4....4....2....0....1 ..2....0....1....3....1....0....1....3....0....0....2....1....1....0....2....4 ..3....2....4....2....1....3....1....3....0....0....1....4....4....0....1....4 ..4....0....2....3....0....3....4....0....3....0....1....4....4....3....1....2 ..4....0....4....0....0....0....1....3....3....0....4....1....1....0....0....1 ..3....0....4....0....2....0....1....2....3....1....1....1....2....3....0....1 ..2....0....4....3....0....0....2....0....2....0....2....1....1....3....0....4 ..4....2....3....2....0....0....1....0....3....0....1....1....1....3....2....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +a(n-4) +24*a(n-5) +2*a(n-6) +5*a(n-7) +11*a(n-8) -8*a(n-10) -2*a(n-11) +3*a(n-12) +a(n-15) +a(n-16)
Comments