A246734 Number of length n+4 0..5 arrays with no pair in any consecutive five terms totalling exactly 5.
1566, 5430, 18966, 66294, 231414, 807630, 2818830, 9838974, 34342350, 119869158, 418392870, 1460364774, 5097280614, 17791629822, 62100187038, 216755476782, 756566753022, 2640732594966, 9217254934326, 32172052811478, 112293843388758
Offset: 1
Keywords
Examples
Some solutions for n=4: ..5....2....5....3....5....5....3....3....5....2....5....2....3....3....3....5 ..2....0....4....3....3....4....1....3....3....5....3....4....3....3....3....2 ..1....4....4....0....4....4....1....1....1....4....3....0....4....1....4....4 ..5....2....3....4....4....2....0....0....3....2....4....0....4....1....4....2 ..1....0....5....3....5....4....1....0....3....4....3....4....4....5....4....2 ..5....2....5....0....4....0....1....0....5....4....4....0....4....5....4....2 ..1....0....5....0....3....2....1....3....5....4....3....2....0....5....4....2 ..2....0....3....4....5....0....2....1....1....5....5....2....0....3....0....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A246737.
Formula
Empirical: a(n) = 3*a(n-1) + a(n-2) + a(n-3) + 5*a(n-4) + a(n-5) - a(n-6) - a(n-7).
Empirical g.f.: 6*x*(261 + 122*x + 185*x^2 + 400*x^3 + 51*x^4 - 98*x^5 - 77*x^6) / ((1 + x)*(1 - 4*x + 3*x^2 - 4*x^3 - x^4 + x^6)). - Colin Barker, Nov 06 2018