cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246735 Number of length n+4 0..6 arrays with no pair in any consecutive five terms totalling exactly 6.

Original entry on oeis.org

3876, 15960, 66378, 276762, 1152576, 4791012, 19906740, 82727094, 343911336, 1430080296, 5946396012, 24722787264, 102780120750, 427285990662, 1776417823830, 7385542897866, 30705819911322, 127659940718424
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Column 6 of A246737.

Examples

			Some solutions for n=3
..5....2....3....0....3....2....3....6....4....4....5....2....0....4....2....0
..2....0....0....1....6....0....6....4....0....3....5....0....5....5....3....0
..2....2....5....0....1....1....6....1....5....4....2....1....0....6....5....4
..5....0....5....1....1....3....5....4....5....1....2....1....2....5....2....5
..2....0....0....4....6....2....2....6....3....1....0....3....0....5....2....3
..2....2....4....1....3....2....3....1....0....4....2....4....0....6....0....0
..2....5....0....3....2....2....2....4....0....1....5....0....3....2....3....4
		

Crossrefs

Cf. A246737.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +202*a(n-5) +94*a(n-6) +129*a(n-7) +278*a(n-8) +35*a(n-9) -197*a(n-10) -164*a(n-11) +272*a(n-12) +119*a(n-13) -9*a(n-14) +17*a(n-15) +158*a(n-16) +27*a(n-17) -19*a(n-18) -18*a(n-19) -a(n-20) -2*a(n-21) +2*a(n-22) +a(n-23).