A246735 Number of length n+4 0..6 arrays with no pair in any consecutive five terms totalling exactly 6.
3876, 15960, 66378, 276762, 1152576, 4791012, 19906740, 82727094, 343911336, 1430080296, 5946396012, 24722787264, 102780120750, 427285990662, 1776417823830, 7385542897866, 30705819911322, 127659940718424
Offset: 1
Keywords
Examples
Some solutions for n=3 ..5....2....3....0....3....2....3....6....4....4....5....2....0....4....2....0 ..2....0....0....1....6....0....6....4....0....3....5....0....5....5....3....0 ..2....2....5....0....1....1....6....1....5....4....2....1....0....6....5....4 ..5....0....5....1....1....3....5....4....5....1....2....1....2....5....2....5 ..2....0....0....4....6....2....2....6....3....1....0....3....0....5....2....3 ..2....2....4....1....3....2....3....1....0....4....2....4....0....6....0....0 ..2....5....0....3....2....2....2....4....0....1....5....0....3....2....3....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A246737.
Formula
Empirical: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +202*a(n-5) +94*a(n-6) +129*a(n-7) +278*a(n-8) +35*a(n-9) -197*a(n-10) -164*a(n-11) +272*a(n-12) +119*a(n-13) -9*a(n-14) +17*a(n-15) +158*a(n-16) +27*a(n-17) -19*a(n-18) -18*a(n-19) -a(n-20) -2*a(n-21) +2*a(n-22) +a(n-23).
Comments