cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A246732 Number of length n+4 0..3 arrays with no pair in any consecutive five terms totalling exactly 3.

Original entry on oeis.org

124, 260, 548, 1156, 2436, 5132, 10812, 22780, 47996, 101124, 213060, 448900, 945796, 1992716, 4198492, 8845884, 18637564, 39267844, 82734180, 174314244, 367266052, 773799948, 1630334076, 3434982396, 7237230844, 15248261636
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Examples

			Some solutions for n=4:
..2....3....0....1....0....1....2....1....0....1....3....1....2....3....1....0
..3....1....1....1....2....0....3....1....2....1....3....3....3....1....1....0
..2....1....0....3....2....0....3....1....2....1....3....1....3....3....3....0
..2....3....0....1....2....0....3....1....2....1....1....3....3....3....3....0
..2....3....1....3....0....1....3....1....0....1....3....1....3....3....3....2
..2....3....1....3....0....0....2....1....2....3....1....1....3....3....3....0
..2....1....1....3....2....0....3....1....2....1....3....1....1....3....1....2
..0....1....1....3....2....0....2....0....2....3....1....3....1....1....1....2
		

Crossrefs

Column 3 of A246737.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-4).
Empirical g.f.: 4*x*(31 + 3*x + 7*x^2 + 15*x^3) / (1 - 2*x - x^4). - Colin Barker, Nov 06 2018

A246733 Number of length n+4 0..4 arrays with no pair in any consecutive five terms totalling exactly 4.

Original entry on oeis.org

424, 1096, 2884, 7612, 19992, 52112, 135776, 354428, 926912, 2426008, 6344712, 16581304, 43323852, 113217276, 295956684, 773719596, 2022600900, 5286817120, 13818445276, 36118847720, 94411371892, 246786721208, 645084592792
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Column 4 of A246737

Examples

			Some solutions for n=4
..3....3....4....0....1....2....1....3....3....1....4....4....4....2....0....1
..2....0....1....3....1....0....1....3....0....0....2....1....1....0....2....4
..3....2....4....2....1....3....1....3....0....0....1....4....4....0....1....4
..4....0....2....3....0....3....4....0....3....0....1....4....4....3....1....2
..4....0....4....0....0....0....1....3....3....0....4....1....1....0....0....1
..3....0....4....0....2....0....1....2....3....1....1....1....2....3....0....1
..2....0....4....3....0....0....2....0....2....0....2....1....1....3....0....4
..4....2....3....2....0....0....1....0....3....0....1....1....1....3....2....4
		

Formula

Empirical: a(n) = 2*a(n-1) +a(n-4) +24*a(n-5) +2*a(n-6) +5*a(n-7) +11*a(n-8) -8*a(n-10) -2*a(n-11) +3*a(n-12) +a(n-15) +a(n-16)

A246734 Number of length n+4 0..5 arrays with no pair in any consecutive five terms totalling exactly 5.

Original entry on oeis.org

1566, 5430, 18966, 66294, 231414, 807630, 2818830, 9838974, 34342350, 119869158, 418392870, 1460364774, 5097280614, 17791629822, 62100187038, 216755476782, 756566753022, 2640732594966, 9217254934326, 32172052811478, 112293843388758
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Examples

			Some solutions for n=4:
..5....2....5....3....5....5....3....3....5....2....5....2....3....3....3....5
..2....0....4....3....3....4....1....3....3....5....3....4....3....3....3....2
..1....4....4....0....4....4....1....1....1....4....3....0....4....1....4....4
..5....2....3....4....4....2....0....0....3....2....4....0....4....1....4....2
..1....0....5....3....5....4....1....0....3....4....3....4....4....5....4....2
..5....2....5....0....4....0....1....0....5....4....4....0....4....5....4....2
..1....0....5....0....3....2....1....3....5....4....3....2....0....5....4....2
..2....0....3....4....5....0....2....1....1....5....5....2....0....3....0....1
		

Crossrefs

Column 5 of A246737.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) + a(n-3) + 5*a(n-4) + a(n-5) - a(n-6) - a(n-7).
Empirical g.f.: 6*x*(261 + 122*x + 185*x^2 + 400*x^3 + 51*x^4 - 98*x^5 - 77*x^6) / ((1 + x)*(1 - 4*x + 3*x^2 - 4*x^3 - x^4 + x^6)). - Colin Barker, Nov 06 2018

A246735 Number of length n+4 0..6 arrays with no pair in any consecutive five terms totalling exactly 6.

Original entry on oeis.org

3876, 15960, 66378, 276762, 1152576, 4791012, 19906740, 82727094, 343911336, 1430080296, 5946396012, 24722787264, 102780120750, 427285990662, 1776417823830, 7385542897866, 30705819911322, 127659940718424
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Column 6 of A246737.

Examples

			Some solutions for n=3
..5....2....3....0....3....2....3....6....4....4....5....2....0....4....2....0
..2....0....0....1....6....0....6....4....0....3....5....0....5....5....3....0
..2....2....5....0....1....1....6....1....5....4....2....1....0....6....5....4
..5....0....5....1....1....3....5....4....5....1....2....1....2....5....2....5
..2....0....0....4....6....2....2....6....3....1....0....3....0....5....2....3
..2....2....4....1....3....2....3....1....0....4....2....4....0....6....0....0
..2....5....0....3....2....2....2....4....0....1....5....0....3....2....3....4
		

Crossrefs

Cf. A246737.

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) +a(n-3) +5*a(n-4) +202*a(n-5) +94*a(n-6) +129*a(n-7) +278*a(n-8) +35*a(n-9) -197*a(n-10) -164*a(n-11) +272*a(n-12) +119*a(n-13) -9*a(n-14) +17*a(n-15) +158*a(n-16) +27*a(n-17) -19*a(n-18) -18*a(n-19) -a(n-20) -2*a(n-21) +2*a(n-22) +a(n-23).

A246736 Number of length n+4 0..7 arrays with no pair in any consecutive five terms totalling exactly 7.

Original entry on oeis.org

9368, 47432, 241544, 1231304, 6272072, 31944440, 162700376, 828690200, 4220813912, 21498069128, 109497066248, 557706305672, 2840590647176, 14468108341688, 73691067738968, 375334033262552, 1911705731599640
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Column 7 of A246737

Examples

			Some solutions for n=2
..5....2....5....3....5....6....4....2....0....4....0....2....1....3....4....2
..0....7....0....2....7....6....1....0....5....0....4....1....0....3....6....2
..0....1....6....1....4....5....5....0....3....4....0....0....1....3....2....4
..1....1....3....7....4....6....1....2....1....6....6....0....5....0....4....6
..1....3....0....3....6....7....5....4....3....2....4....1....5....0....0....7
..3....1....3....3....7....4....0....4....5....0....2....1....3....2....0....2
		

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) +4*a(n-3) +18*a(n-4) +12*a(n-5) -4*a(n-7) -a(n-8)

A246738 Number of length 1+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 12, 124, 424, 1566, 3876, 9368, 18768, 36250, 63100, 106452, 168312, 259574, 383124, 554416, 777376, 1072818, 1445868, 1923500, 2512200, 3245902, 4132612, 5214024, 6499824, 8040266, 9846876, 11979268, 14450968, 17331750, 20637300
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Examples

			Some solutions for n=4:
..1....1....2....2....2....0....4....4....3....3....3....0....3....4....1....2
..0....0....0....3....1....3....1....4....3....4....3....3....3....3....4....3
..2....2....1....3....0....0....2....2....4....2....2....3....0....3....4....4
..0....1....0....0....0....3....1....1....4....4....3....0....0....3....2....3
..1....0....0....3....0....0....1....1....3....3....4....3....3....4....1....4
		

Crossrefs

Row 1 of A246737.

Formula

Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 3*x + 44*x^2 + 34*x^3 + 189*x^4 + 43*x^5 + 166*x^6) / ((1 - x)^6*(1 + x)^3).
a(n) = 10*n - 20*n^2 + 15*n^3 - 5*n^4 + n^5 for n even.
a(n) = 16 - 15*n - 10*n^2 + 15*n^3 - 5*n^4 + n^5 for n odd.
(End)

A246739 Number of length 2+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 16, 260, 1096, 5430, 15960, 47432, 109552, 246890, 483520, 920652, 1606776, 2735390, 4392136, 6907280, 10419040, 15447762, 22202352, 31455380, 43507240, 59453702, 79710136, 105775320, 138205776, 178991930, 228860320, 290390492
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Examples

			Some solutions for n=4:
..4....1....4....2....4....2....1....4....0....2....1....2....0....4....2....2
..4....0....3....0....4....1....1....2....1....1....1....0....2....1....1....3
..3....2....3....0....4....0....1....4....1....1....0....1....1....4....0....3
..2....0....3....3....4....0....1....3....2....1....2....0....1....4....0....3
..3....0....3....0....2....0....1....3....1....4....0....1....1....4....0....4
..3....3....2....2....1....1....4....3....0....4....1....2....1....2....0....2
		

Crossrefs

Row 2 of A246737.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 5*x + 105*x^2 + 161*x^3 + 1023*x^4 + 655*x^5 + 2211*x^6 + 523*x^7 + 1076*x^8) / ((1 - x)^7*(1 + x)^4).
a(n) = -58*n + 111*n^2 - 87*n^3 + 36*n^4 - 8*n^5 + n^6 for n even.
a(n) = -70 + 80*n + 34*n^2 - 71*n^3 + 36*n^4 - 8*n^5 + n^6 for n odd.
(End)

A246740 Number of length 3+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 22, 548, 2884, 18966, 66378, 241544, 643048, 1687850, 3716830, 7980972, 15368172, 28868798, 50412754, 86141456, 139758928, 222590034, 341128998, 514651700, 753789460, 1089386342, 1537935322, 2146429848, 2939373624
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Row 3 of A246737

Examples

			Some solutions for n=4
..2....4....1....3....2....0....4....3....0....4....0....4....3....3....4....4
..4....4....2....3....1....3....3....2....3....1....1....1....3....2....1....3
..4....4....1....3....1....0....3....0....2....1....0....4....3....4....4....4
..3....1....1....3....1....3....3....0....0....2....2....2....4....4....1....3
..4....2....1....2....1....3....2....3....3....4....1....1....2....4....2....3
..3....4....1....0....0....0....3....3....3....1....1....1....3....4....1....2
..4....1....2....3....1....0....3....3....3....1....1....4....4....2....4....3
		

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) -14*a(n-3) +5*a(n-4) +25*a(n-5) -20*a(n-6) -20*a(n-7) +25*a(n-8) +5*a(n-9) -14*a(n-10) +2*a(n-11) +3*a(n-12) -a(n-13)

A246741 Number of length 4+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 30, 1156, 7612, 66294, 276762, 1231304, 3780600, 11549290, 28599190, 69230412, 147079860, 304811486, 578865042, 1074611344, 1875204592, 3208049874, 5242291470, 8421730580, 13061681580, 19963508422, 29676180490, 43560086616
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Row 4 of A246737

Examples

			Some solutions for n=4
..2....1....1....2....3....1....1....4....3....0....0....3....4....3....2....2
..0....2....4....3....4....2....0....4....3....2....3....2....4....0....1....1
..3....1....4....0....3....0....0....1....0....0....2....4....3....3....1....1
..3....4....4....0....3....1....2....4....2....3....3....4....3....2....1....4
..3....1....2....0....3....1....1....2....0....0....3....4....3....0....0....4
..3....4....1....2....3....0....1....1....0....3....4....1....3....0....1....1
..3....4....1....1....4....0....1....1....1....2....4....4....0....0....1....2
..3....4....1....1....4....2....4....1....0....3....4....1....0....3....2....4
		

Formula

Empirical: a(n) = 3*a(n-1) +3*a(n-2) -17*a(n-3) +3*a(n-4) +39*a(n-5) -25*a(n-6) -45*a(n-7) +45*a(n-8) +25*a(n-9) -39*a(n-10) -3*a(n-11) +17*a(n-12) -3*a(n-13) -3*a(n-14) +a(n-15)

A246742 Number of length 5+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 40, 2436, 19992, 231414, 1152576, 6272072, 22219408, 79002090, 220032120, 600454092, 1407554280, 3218159966, 6646694992, 13405336464, 25160170656, 46234874322, 80560371528, 137811490580, 226332464440, 365838595782
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Comments

Row 5 of A246737

Examples

			Some solutions for n=4
..2....4....1....0....0....0....1....2....4....0....0....1....4....0....1....3
..4....3....1....0....1....1....2....0....1....1....0....1....1....3....4....2
..4....3....0....0....0....1....4....1....4....1....2....4....4....2....1....3
..1....3....2....3....2....1....1....1....1....0....0....4....4....3....4....3
..4....4....1....3....1....1....1....0....4....0....0....4....4....3....1....4
..1....3....1....3....1....0....1....2....4....1....0....2....2....3....1....3
..1....4....0....2....1....0....4....0....1....2....1....4....3....3....1....3
..4....4....1....3....4....1....2....1....2....0....2....1....3....0....4....3
..4....4....0....0....1....0....4....0....4....1....0....1....3....2....1....4
		

Formula

Empirical: a(n) = 3*a(n-1) +4*a(n-2) -20*a(n-3) +56*a(n-5) -28*a(n-6) -84*a(n-7) +70*a(n-8) +70*a(n-9) -84*a(n-10) -28*a(n-11) +56*a(n-12) -20*a(n-14) +4*a(n-15) +3*a(n-16) -a(n-17)
Showing 1-10 of 12 results. Next