cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246738 Number of length 1+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

Original entry on oeis.org

2, 12, 124, 424, 1566, 3876, 9368, 18768, 36250, 63100, 106452, 168312, 259574, 383124, 554416, 777376, 1072818, 1445868, 1923500, 2512200, 3245902, 4132612, 5214024, 6499824, 8040266, 9846876, 11979268, 14450968, 17331750, 20637300
Offset: 1

Views

Author

R. H. Hardin, Sep 02 2014

Keywords

Examples

			Some solutions for n=4:
..1....1....2....2....2....0....4....4....3....3....3....0....3....4....1....2
..0....0....0....3....1....3....1....4....3....4....3....3....3....3....4....3
..2....2....1....3....0....0....2....2....4....2....2....3....0....3....4....4
..0....1....0....0....0....3....1....1....4....4....3....0....0....3....2....3
..1....0....0....3....0....0....1....1....3....3....4....3....3....4....1....4
		

Crossrefs

Row 1 of A246737.

Formula

Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 3*x + 44*x^2 + 34*x^3 + 189*x^4 + 43*x^5 + 166*x^6) / ((1 - x)^6*(1 + x)^3).
a(n) = 10*n - 20*n^2 + 15*n^3 - 5*n^4 + n^5 for n even.
a(n) = 16 - 15*n - 10*n^2 + 15*n^3 - 5*n^4 + n^5 for n odd.
(End)