A246738 Number of length 1+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
2, 12, 124, 424, 1566, 3876, 9368, 18768, 36250, 63100, 106452, 168312, 259574, 383124, 554416, 777376, 1072818, 1445868, 1923500, 2512200, 3245902, 4132612, 5214024, 6499824, 8040266, 9846876, 11979268, 14450968, 17331750, 20637300
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1....1....2....2....2....0....4....4....3....3....3....0....3....4....1....2 ..0....0....0....3....1....3....1....4....3....4....3....3....3....3....4....3 ..2....2....1....3....0....0....2....2....4....2....2....3....0....3....4....4 ..0....1....0....0....0....3....1....1....4....4....3....0....0....3....2....3 ..1....0....0....3....0....0....1....1....3....3....4....3....3....4....1....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 1 of A246737.
Formula
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Conjectures from Colin Barker, Nov 06 2018: (Start)
G.f.: 2*x*(1 + 3*x + 44*x^2 + 34*x^3 + 189*x^4 + 43*x^5 + 166*x^6) / ((1 - x)^6*(1 + x)^3).
a(n) = 10*n - 20*n^2 + 15*n^3 - 5*n^4 + n^5 for n even.
a(n) = 16 - 15*n - 10*n^2 + 15*n^3 - 5*n^4 + n^5 for n odd.
(End)