A246741 Number of length 4+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
2, 30, 1156, 7612, 66294, 276762, 1231304, 3780600, 11549290, 28599190, 69230412, 147079860, 304811486, 578865042, 1074611344, 1875204592, 3208049874, 5242291470, 8421730580, 13061681580, 19963508422, 29676180490, 43560086616
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2....1....1....2....3....1....1....4....3....0....0....3....4....3....2....2 ..0....2....4....3....4....2....0....4....3....2....3....2....4....0....1....1 ..3....1....4....0....3....0....0....1....0....0....2....4....3....3....1....1 ..3....4....4....0....3....1....2....4....2....3....3....4....3....2....1....4 ..3....1....2....0....3....1....1....2....0....0....3....4....3....0....0....4 ..3....4....1....2....3....0....1....1....0....3....4....1....3....0....1....1 ..3....4....1....1....4....0....1....1....1....2....4....4....0....0....1....2 ..3....4....1....1....4....2....4....1....0....3....4....1....0....3....2....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..69
Formula
Empirical: a(n) = 3*a(n-1) +3*a(n-2) -17*a(n-3) +3*a(n-4) +39*a(n-5) -25*a(n-6) -45*a(n-7) +45*a(n-8) +25*a(n-9) -39*a(n-10) -3*a(n-11) +17*a(n-12) -3*a(n-13) -3*a(n-14) +a(n-15)
Comments