A246742 Number of length 5+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
2, 40, 2436, 19992, 231414, 1152576, 6272072, 22219408, 79002090, 220032120, 600454092, 1407554280, 3218159966, 6646694992, 13405336464, 25160170656, 46234874322, 80560371528, 137811490580, 226332464440, 365838595782
Offset: 1
Keywords
Examples
Some solutions for n=4 ..2....4....1....0....0....0....1....2....4....0....0....1....4....0....1....3 ..4....3....1....0....1....1....2....0....1....1....0....1....1....3....4....2 ..4....3....0....0....0....1....4....1....4....1....2....4....4....2....1....3 ..1....3....2....3....2....1....1....1....1....0....0....4....4....3....4....3 ..4....4....1....3....1....1....1....0....4....0....0....4....4....3....1....4 ..1....3....1....3....1....0....1....2....4....1....0....2....2....3....1....3 ..1....4....0....2....1....0....4....0....1....2....1....4....3....3....1....3 ..4....4....1....3....4....1....2....1....2....0....2....1....3....0....4....3 ..4....4....0....0....1....0....4....0....4....1....0....1....3....2....1....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..66
Formula
Empirical: a(n) = 3*a(n-1) +4*a(n-2) -20*a(n-3) +56*a(n-5) -28*a(n-6) -84*a(n-7) +70*a(n-8) +70*a(n-9) -84*a(n-10) -28*a(n-11) +56*a(n-12) -20*a(n-14) +4*a(n-15) +3*a(n-16) -a(n-17)
Comments