cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246743 Number of length 6+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.

This page as a plain text file.
%I A246743 #6 Jul 23 2025 11:32:24
%S A246743 2,52,5132,52112,807630,4791012,31944440,130526848,540366650,
%T A246743 1692606260,5207709252,13469585232,33976308422,76317563812,
%U A246743 167224561520,337577831552,666340346610,1237996390068,2255112904700,3921870847120
%N A246743 Number of length 6+4 0..n arrays with no pair in any consecutive five terms totalling exactly n.
%C A246743 Row 6 of A246737
%H A246743 R. H. Hardin, <a href="/A246743/b246743.txt">Table of n, a(n) for n = 1..60</a>
%F A246743 Empirical: a(n) = 3*a(n-1) +5*a(n-2) -23*a(n-3) -4*a(n-4) +76*a(n-5) -28*a(n-6) -140*a(n-7) +98*a(n-8) +154*a(n-9) -154*a(n-10) -98*a(n-11) +140*a(n-12) +28*a(n-13) -76*a(n-14) +4*a(n-15) +23*a(n-16) -5*a(n-17) -3*a(n-18) +a(n-19)
%e A246743 Some solutions for n=4
%e A246743 ..1....4....1....2....2....4....4....4....0....1....0....2....4....3....2....1
%e A246743 ..1....4....1....3....3....4....1....1....0....1....0....3....4....3....3....0
%e A246743 ..0....1....2....0....0....4....1....4....2....0....0....0....4....3....3....0
%e A246743 ..1....1....4....0....3....2....2....4....0....0....0....3....3....2....4....0
%e A246743 ..0....1....4....3....0....4....4....4....3....1....1....0....2....0....3....0
%e A246743 ..2....2....1....0....0....3....1....4....0....0....0....0....3....0....4....2
%e A246743 ..1....1....4....3....0....4....1....4....0....1....0....3....3....0....4....1
%e A246743 ..0....1....1....3....3....3....4....1....2....2....0....3....3....3....4....0
%e A246743 ..1....0....4....0....2....3....2....2....3....1....0....0....0....0....4....0
%e A246743 ..0....1....1....3....3....3....1....1....0....0....2....3....3....2....3....0
%K A246743 nonn
%O A246743 1,1
%A A246743 _R. H. Hardin_, Sep 02 2014