cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246749 Decimal expansion of F'(rho), an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number, where the function F and the constant rho are defined in A246746.

This page as a plain text file.
%I A246749 #10 Jan 17 2020 16:04:00
%S A246749 5,6,9,7,7,5,8,9,3,4,2,3,0,1,9,2,6,7,5,7,5,2,9,1,3,7,0,4,6,8,5,2,4,7,
%T A246749 8,9,7,8,5,8,1,0,1,9,8,2,1,7,8,3,5,7,3,5,9,3,4,5,9,5,6,7,1,7,5,8,4,1,
%U A246749 1,4,4,0,5,3,8,6,6,0,6,7,7,6,8,3,1,7,8,4,7,5,1,5,7,4,3,8,9,2,8,8,5
%N A246749 Decimal expansion of F'(rho), an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number, where the function F and the constant rho are defined in A246746.
%H A246749 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 16.
%H A246749 Kevin Ford, <a href="http://www.math.uiuc.edu/~ford/wwwpapers/totients.pdf">The distribution of Totients</a>
%F A246749 Let F(x) = sum_{k >= 1} ((k+1)*log(k+1) - k*log(k) - 1)*x^k.
%F A246749 F'(rho), where rho is the unique solution on [0,1) of F(rho)=1,
%e A246749 5.6977589342301926757529137046852478978581019821783573593459567...
%t A246749 digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; F'[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*k*x^(k - 1), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[F'[rho], 10, digits] // First
%Y A246749 Cf. A246746.
%K A246749 nonn,cons
%O A246749 1,1
%A A246749 _Jean-François Alcover_, Sep 02 2014