cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246751 Decimal expansion of D, an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number.

This page as a plain text file.
%I A246751 #12 May 18 2020 10:33:23
%S A246751 2,1,7,6,9,6,8,7,4,3,5,5,9,4,1,0,3,2,1,7,3,9,7,2,7,2,9,8,7,3,5,8,1,4,
%T A246751 3,2,9,7,6,7,2,7,3,7,5,8,9,6,5,8,4,4,9,6,0,2,3,8,6,2,8,0,0,0,6,4,7,3,
%U A246751 5,2,5,6,2,2,0,3,3,7,4,9,0,9,8,4,0,5,1,2,2,7,4,0,8,6,0,7,4,9,3
%N A246751 Decimal expansion of D, an auxiliary constant associated with the asymptotic number of values of the Euler totient function less than a given number.
%H A246751 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 16.
%H A246751 Kevin Ford, <a href="http://www.math.uiuc.edu/~ford/wwwpapers/totients.pdf">The distribution of Totients</a>
%F A246751 Let F(x) = sum_{k >= 1} ((k+1)*log(k+1) - k*log(k) - 1)*x^k.
%F A246751 C = 1/(2*|log(rho)|), where rho is the unique solution on [0,1) of F(rho)=1.
%F A246751 D = 2*C*(1 + log(F'(rho)) - log(2*C)) - 3/2.
%e A246751 2.176968743559410321739727298735814329767273758965844960238628...
%t A246751 digits = 99; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; F'[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*k*x^(k - 1), {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; c = -1/(2*Log[rho]); d = 2*c*(1 + Log[F'[rho]] - Log[2*c]) - 3/2; RealDigits[d, 10, digits] // First
%Y A246751 Cf. A246746, A246749, A234614.
%K A246751 nonn,cons
%O A246751 1,1
%A A246751 _Jean-François Alcover_, Sep 02 2014