A246761 a(n) = Sum_{k=0..n} C(n,k)^3 * C(2k,k) * C(3k,k) * (3k + 1).
1, 25, 823, 34459, 1663267, 85847347, 4598058505, 252738855901, 14170006731643, 806810379495379, 46503528950782309, 2707097765891635585, 158884136607368717797, 9389663462839346537221, 558176792747732603265463, 33349982885530909490561203
Offset: 0
Keywords
Examples
a(1) = 25 since Sum_{k=0..1} C(1,k)^3 * C(2k,k) * C(3k,k)*(3k+1) = 1 + 2*3*4 = 25.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, arXiv:1408.5381 [math.NT], 2014-2018.
Crossrefs
Cf. A246459.
Programs
-
Mathematica
a[n_]:=Sum[Binomial[n,k]^3*Binomial[2k,k]Binomial[3k,k](3k+1),{k,0,n}] Table[a[n],{n,0,15}]
Formula
a(n) ~ 2^(6*n+2) / (Pi^2 * n). - Vaclav Kotesovec, Nov 27 2017
Comments