A246768 Decimal expansion of Sum_{k >= 1} log(1 + 1/2^k), a digital tree search constant.
8, 6, 8, 8, 7, 6, 6, 5, 2, 6, 5, 8, 5, 5, 4, 9, 9, 8, 1, 5, 3, 1, 2, 7, 8, 0, 1, 3, 1, 3, 8, 3, 7, 7, 8, 5, 0, 9, 2, 5, 8, 0, 0, 6, 8, 4, 9, 9, 8, 6, 6, 7, 9, 6, 4, 0, 1, 2, 6, 5, 7, 2, 7, 7, 9, 8, 2, 2, 5, 4, 1, 7, 0, 8, 8, 0, 5, 0, 4, 6, 4, 3, 7, 4, 9, 1, 5, 9, 9, 7, 9, 3, 6, 6, 3, 5, 0, 0, 6, 3, 8, 8, 3
Offset: 0
Examples
0.8688766526585549981531278013138377850925800684998667964...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 44.
Crossrefs
Cf. A141848. - Gleb Koloskov, Apr 04 2021
Programs
-
Mathematica
digits = 103; NSum[Log[1 + 1/2^k], {k, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 60] // RealDigits[#, 10, digits]& // First N[-Log[QPochhammer[1/2, 1/4]]] (* Gleb Koloskov, Apr 04 2021 *)
-
PARI
-log(prodinf(n=0, 1-2^(-2*n-1))) \\ Gleb Koloskov, Apr 04 2021
Formula
Also equals Sum_{k >= 1} (-1)^(k-1)/(k*(2^k - 1)).
Equals -log(1-P), where P is the Pell constant from A141848. - Gleb Koloskov, Apr 04 2021