cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246768 Decimal expansion of Sum_{k >= 1} log(1 + 1/2^k), a digital tree search constant.

Original entry on oeis.org

8, 6, 8, 8, 7, 6, 6, 5, 2, 6, 5, 8, 5, 5, 4, 9, 9, 8, 1, 5, 3, 1, 2, 7, 8, 0, 1, 3, 1, 3, 8, 3, 7, 7, 8, 5, 0, 9, 2, 5, 8, 0, 0, 6, 8, 4, 9, 9, 8, 6, 6, 7, 9, 6, 4, 0, 1, 2, 6, 5, 7, 2, 7, 7, 9, 8, 2, 2, 5, 4, 1, 7, 0, 8, 8, 0, 5, 0, 4, 6, 4, 3, 7, 4, 9, 1, 5, 9, 9, 7, 9, 3, 6, 6, 3, 5, 0, 0, 6, 3, 8, 8, 3
Offset: 0

Views

Author

Jean-François Alcover, Sep 03 2014

Keywords

Examples

			0.8688766526585549981531278013138377850925800684998667964...
		

Crossrefs

Cf. A141848. - Gleb Koloskov, Apr 04 2021

Programs

  • Mathematica
    digits = 103; NSum[Log[1 + 1/2^k], {k, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 60] // RealDigits[#, 10, digits]& // First
    N[-Log[QPochhammer[1/2, 1/4]]] (* Gleb Koloskov, Apr 04 2021 *)
  • PARI
    -log(prodinf(n=0, 1-2^(-2*n-1))) \\ Gleb Koloskov, Apr 04 2021

Formula

Also equals Sum_{k >= 1} (-1)^(k-1)/(k*(2^k - 1)).
A245675 = 1/12 + Pi^2/(6*log(2)^2) - 2*A246768/log(2) = 1.000000000001237...
Equals -log(1-P), where P is the Pell constant from A141848. - Gleb Koloskov, Apr 04 2021